Browse > Article
http://dx.doi.org/10.5322/JES.2008.17.5.555

Analysis of Bacterial Community Structure of Biological Activated Carbon Process in Drinking Water Treatment Plant Using FISH  

Son, Hyeng-Sik (Department of Microbiology, Pusan National University)
Kim, Mi-A (Korea Bio-IT Foundry Center, Pusan National University)
Jeong, Seong-Yun (Korea Bio-IT Foundry Center, Pusan National University)
Kim, Young-Hun (Korea Bio-IT Foundry Center, Pusan National University)
Son, Hee-Jong (Water Quality Research Institute, Waterworks Headquarter)
Park, Geun-Tae (Research & University-Industry Cooperation, Pusan National University)
Kim, Min-Ju (Department of Microbiology, Pusan National University)
Ryu, Eun-Yeon (Department of Microbiology, Pusan National University)
Lee, Sang-Joon (Department of Microbiology, Pusan National University)
Publication Information
Journal of Environmental Science International / v.17, no.5, 2008 , pp. 555-564 More about this Journal
Abstract
The bacterial community structure in biological activated carbon (BAC) process in drinking water treatment plant was investigated by Fluorescent in situ Hybridization (FISH) with rRNA-targeted oligonucleotide probe. Samples were collected at different three points in BAC process every month for one year. They were hybridized with a probe specific for the alpha, beta, gamma subclass of the class Proteobacteria, Cytophaga-Flavobacteria group and Gram-positive high G+C content (HGC) group. Total numbers of bacteria in BAC process counted by 4',6-diamidino-2-phenylindole (DAPI) staining were $5.4{\times}10^{10}$ (top), $4.0{\times}10^{10}$ (middle) and $2.8{\times}10^{10}$ cells/ml (bottom). The number of the culturable bacteria was from $1.0{\times}10^7$ to $3.6{\times}10^7$ cells/ml and the culturability was about 0.05%. The faction of bacteria detectable by FISH with the probe EUB338 was about 83% of DAPI counts. Gamma and alpha subclass of the class Proteobacteria were predominant in BAC process and their ratios were over 20% respectively. In top and middle, alpha, beta and gamma subclass of the class Proteobacteria competed with each other and their percentages was changed according to the season. In bottom, gamma subclass of the class Proteobacteria was predominant all through the year. It could be successfully observed the seasonal distribution of bacterial community in biological activated carbon process using FISH.
Keywords
Biological activated carbon; Bacterial community; FISH; Drinking water treatment plant;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 신성교, 이수웅, 박청길, 1996, 낙동강에서 chlor- ophyll-a와 BOD의 상관관계, 한국수질보전학회지, 12, 369-375
2 이상훈, 문순식, 신종철, 최광근, 심상준, 박대원, 이진원, 2003, 오존처리와 생물활성탄 공정에 의한 상수원수 중의 용존유기물 제거, 한국생물공학회지, 18, 211-216
3 Woese C. R., 1987, Bacterial evolution, Microbiol. Rev., 51, 221-271
4 Falkentoft C. M., Müller E., Arnz P., Harremoës P., Mosbaek H., Wilderer P. A., Wuertz S., 2002, Population changes in a biofilm reactor for phosphorus removal as evidenced by the use of FISH, Wat. Res., 36, 491-500   DOI   ScienceOn
5 Bouvier T., Giorgio P. A. D., 2003, Factors influencing the detection of bacterial cells using fluorescence in situ hybridization (FISH): a quantitative review of published reports, FEMS Microbiol. Ecol., 44, 3-15   DOI   ScienceOn
6 Delong E. F., Wickham G. S., Davis A. A., 1993, Phylogenetic diversity of substrate marine microbial communities from the Atlantics and Pacific Oceans, Science, 243, 1360-1363   DOI
7 Alfreider A., Pernthhaler J., Amman R., Sattler B., Glockner F. O., Wille A., Psenner R., 1996, Community analysis of the bacterial assemblages in the winter cover and pelagic layers of a high mountain lake by in situ hybridization, Appl. Environ. Microbiol., 62, 2138-2144
8 Trebesius K., Amann R., Ludwig W., Muhlegger K., Schleifer K. H., 1994, Identification of whole fixed bacterial cells with nonradioactive rRNA targeted transcript probes, Appl. Environ. Microbiol., 60, 3228-3235
9 Amann R., Ludwig W., Schleifer K. H., 1995, Phylogenetic identification and in situ defection of individual microbial cells without cultivation, Microbiol. Rev., 59, 143-169
10 Prescott L. M., Harley J. P., Klein D. A., 2002, Microbiology, McGraw-Hill Higher Education, New- York
11 김영오, 박태주, 이태호, 2004, In situ 측정기법을 이용한 호기성 고정생물막의 형상 변화와 미생물 활성 및 분포 해석, 대한환경공학회지, 26, 566-572
12 Moll D. M., Summers R. S., Fonseca A. C., Matheis W., 1999, Impact of temperature on drinking water biofilter performance and microbial community structure, Environ. Sci. Technol., 33, 2377-2382   DOI   ScienceOn
13 APHA, 1992, Standard methods for the examination of water and wastewater. APHA-AWWA-WPCD, New York
14 Huber I., Spanggaard B., Appel K. F., Rossen L., Nielsen T.. Gram L., 2004, Phylogenetic analysis and in situ identification of the intestinal microbial community of rainbow trout (Oncorhynchus mykiss, Walbaum), Appl. Environ. Microbiol., 96, 117-132   DOI   ScienceOn
15 Dorigo U., Volatier L., Humbert J. F., 2005, Molecular approaches to the assessment of biodiversity in aquatic microbial communities, Wat. Res., 39, 2207-2218   DOI   ScienceOn
16 Melin E., Eikebrokk B., Brugger M., Odegaard H., 2002, Treatment of humic surface water at cold temperatures by ozonation and biofiltration, Wat. Sci. Tech.: Wat. Suppl., 2, 451-457   DOI
17 Wagner M., Erhart R., Manz W., Amann R., Lemmer H., Wedi D., Schleifer K. H., 1994, Development of an rRNA-targeted oligonucleotide probe specific for the genus Acinetobacter and its application for in situ monitoring in activated sludge, Appl. Environ. Microbiol., 60, 792-800
18 Manz W., Szewzyk U., Ericsson P., Amann R., Schleifer K. H., Stenström T. A., 1993, In situ identification of bacteria in drinking water and adjoining biofilms by hybridization with 16S and 23S rRNA-directed fluorescent oligonucleotide probes, Appl. Environ. Microbiol., 59, 2293-2298
19 Hicks R. E., Amann R. I., Stahl D. A., 1992, Dual staining of natural bacterioplankton with 4',6-diamidino- 2-phenylindole and fluorescent oligonucleotide probes targeting kingdomlevel 16S rRNA sequences, Environ. Microbiol., 58, 2158-2163
20 박홍기, 정종문, 박재림, 홍용기, 1999, 낙동강 하류 에서 식물플랑크톤 생산력과 수질 변화와의 관계, 한국환경과학회지, 8, 101-106
21 長澤, 1990, 粒狀活性炭表層のおける微生物の動向, 第41回日本水道硏究發表會發表論文集, 1-3pp
22 박홍기, 나영신, 정종문, 류동춘, 이상준, 홍용기, 2001, 낙동강 하류 상수원수의 생물활성탄에 의한 수질개선 및 세균분포 특성, 한국환경과학회지, 10, 105-111
23 Amann R., Ludwig W., Schleifer K. H., 1994, Identification of uncultured bacteria: a challenging task for molecular taxonomists, ASM News, 60 360-365
24 유명호, 김영웅, 손희종, 1998, 낙동강 수계의 수질 변화 특성, 부산광역시 수질연구소 상수도연구소 보, 4, 1-15
25 Manz W., Amann R., Ludwig W., Wagner M., 1992, Phylogenetic oligodeoxynucleotide probes for the major subclasses of Proteobacteria : Problems and solutions, Appl. Environ. Microbiol., 15, 593-600
26 Porter K. G., Feig Y. S., 1980, The use of DAPI for identifying and counting aquatic microflora, Limnol. Oceanogr., 25, 943-948   DOI
27 Fonseca A. C., Summers R. S., Hernandez M. T., 2001, Comparative measurements of microbial activity in drinking water biofilters, Wat. Res., 35, 3817-3824   DOI   ScienceOn
28 Gibride K. A., Lee D. Y., Beaudette L. A., 2006, Molecular techniques in wastewater: understanding microbial communities, detecting pathogens, and real- time process control, J. Microbiol. Meth., 66, 1-20   DOI   ScienceOn
29 박중현, 1994, 낙동강 수질오염대책 및 음용수 공 급방안, 대한상하수도학회지, 8, 51-63
30 Kihn A., Andersson A., Laurent P., Servais P., Prevost M., 2002, Impact of filtration material on nitrification in biological filters used in drinking water production, J. Wat. Supply: Res. & Technol.-Aqua, 51, 35-45
31 Kim W. H., Mitsumasa O., 2007, Characterization of organic matters removed by biological activated carbon, J. Environ. Sci., 16, 671-675   과학기술학회마을   DOI   ScienceOn
32 日本水道協會, 1985, 日本上水道試驗方法, 630- 637pp
33 O'Sullivan C., Burrel P. C., Clarke W. P., Blackall L. L., 2007, A survey of the relative abundance of specific groups of cellulose degrading bacteria in anaerobic environments using fluorescence in situ hybridization, Appl. Microbiol., 103, 1332-1343   DOI   ScienceOn