• Title/Summary/Keyword: Bioinert

Search Result 14, Processing Time 0.025 seconds

Designing Materials for Hard Tissue Replacement

  • Nath, Shekhar;Basu, Bikramjit
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.1
    • /
    • pp.1-29
    • /
    • 2008
  • In last two decades, an impressive progress has been recorded in terms of developing new materials or refining existing material composition/microstructure in order to obtain better performance in biomedical applications. The success of such efforts clearly demands better understanding of various concepts, e.g. biocompatibility, host response, cell-biomaterial interaction. In this article, we review the fundamental understanding that is required with respect to biomaterials development, as well as various materials and their properties, which are relevant in applications, such as hard tissue replacement. A major emphasize has been placed to present various design aspects, in terms of materials processing, of ceramics and polymer based biocomposites, Among the bioceramic composites, the research results obtained with Hydroxyapatite (HAp)-based biomaterials with metallic (Ti) or ceramic (Mullite) reinforcements as well as $SiO_2-MgO-Al_2O_3-K_2O-B_2O_3-F$ glass ceramics and stabilized $ZrO_2$ based bioinert ceramics are summarized. The physical as well as tribological properties of Polyethylene (PE) based hybrid biocomposites are discussed to illustrate the concept on how can the physical/wear properties be enhanced along with biocompatibility due to combined addition of bioinert and bioactive ceramic to a bioinert polymeric matrix. The tribological and corrosion properties of some important orthopedic metallic alloys based on Ti or Co-Cr-Mo are also illustrated. At the close, the future perspective on orthopedic biomaterials development and some unresolved issues are presented.

Surface characteristics and biocompatibility of bioinert nitrides ion plated titanium implant (생불활성 질화물 이온도금된 티타늄 임프란트의 표면특성 및 생체적합성)

  • Chang, Kap-Sung;Kim, Heung-Joong;Park, Joo-Cheol;Kim, Byung-Ock;Han, Kyung-Yoon
    • Journal of Periodontal and Implant Science
    • /
    • v.29 no.1
    • /
    • pp.209-231
    • /
    • 1999
  • Even though titanium(Ti) and its alloys are the most used dental implant materials, there are some problems that Ti wears easily and interferes normal osteogenesis due to the metal ions. Ti coated with bioactive ceramics such as hydroxyapatite has also such problems as the exfoliation or resorption of the coated layer, Recent studies on implant materials have been proceeding to improve physical properties of the implant substrate and biocompatibility of the implant surfaces. The purpose of the present study was to examine the physical property and bone tissue compatibility of bioinert nitrides ion plated Ti, Button type specimens(14mm in diameter, 2.32rrun in height) for the abrasion test and cytotoxicity test and thread type implants(3.75mm in diameter, 6mm in length) for the animal experiments were made from Ti(grade 2) and 316LVM stainless steel. Ti specimens were ion plated with TiN, ZrN by the low temperature arc vapor deposition, and the depth profile of the TiN/Ti, ZrN/Ti ion plated surface was examined by Auger Electron Spectroscopy. Three kind of button type specimens .of TiN/Ti, ZrN/Ti and Ti were used for abrasion test, and HEPAlClC7 cells and CCD cells were cultivated for 4 days with the specimens for cytotoxicity test. Thread type implants of TiN/Ti, ZrN/Ti, Ti, 316LVM were implanted on the femur of 6 adult dogs weighing 10kg-13kg. Two dogs were sacrified for histological examination after 45 days and 90 days, and four dogs were sacrified for the removal torque test of the implant') after 90 days. The removal torque force was measured by Autograph (Shimadzu Co., AGS-1000D series, Japan). Abrasion resistance of TiN/Ti was the highest, and that of ZrN/Ti and Ti were followed. The bioinert nitride ion plated Ti had much better abrasion resistance, compared with Ti, In the cytotoxicity test, the number of both cells were increased in all specimens, and there were no significant difference in cytotoxic reaction among all groups (p>0.1), In histological examination, 316LVM showed the soft tissue engagement in interface between the implant and bone, but the other materials after 45 days noted immature new bone formation in the medullary portion along the implant surface, and those after 90 days showed implant support by new bone formation in both the cortical and the medullary portion, The removal torque force of Tilv/Ti showed significantly higher than that of Ti(p(O,05). The difference in removal torque force between TiN/Ti and ZrN/Ti was not significant(p>0.05), and that of 316LVM was lowest among all groups(p<0.05). These results suggest that bioinert nitrides ion plated Ti can resolve the existing problems of Ti and bioactive ceramics, and it may be clinically applicable to human.

  • PDF

Osteoblast Cell Morphology, Proliferation, and Differentiation in Variation with Biomaterials (생체재료의 선택에 따른 조골세포의 형상, 증식 및 분화)

  • 김학관;장주웅;정희석;이득용
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.6
    • /
    • pp.601-607
    • /
    • 2003
  • Osteoblast-like cell morphology, proliferation, and differentiation were examined in variation with biomaterials. Cells were cultured on TiO$_2$, Ti, 3Y-TZP, HA (Hydroxyapatite) and Thermanox was used as a control specimen. Generally, all specimens have similar cell morphology within the same time interval. However, cells on HA seem to be more thicker than those on TiO$_2$, Ti, 3Y-TZP and cell overlapping was detected very frequently on HA. In case of cell proliferation and differentiation, bioactive material such as HA could help osteoblast-like cell proliferate and provoke a sharp increase of ALP. On the other hand, whether the substrate material is a bioinert ceramics or metal, it does not so strongly affect the cell attachment, proliferation. and differentiation.

생체 활성이 높은 생체 유리란\ulcorner

  • 김철영
    • Ceramist
    • /
    • v.7 no.1
    • /
    • pp.66-74
    • /
    • 2004
  • 1970년 이후 30여 년 동안 생체 이식재료로서 다양한 종류의 바이오 세라믹스가 소개되었고 그 일부는 임상에서 성공적으로 응용되고 있다. 이색재료로 사용되던 대부분의 금속재료가 인체 내에서 독성을 나타내고 있기 때문에 처음에는 인체 내에서 전혀 반응을 하지 않는 알루미나, 탄소등 비활성(bioinert)재료가 응용되었다. 이들 바이오 세라믹스는 인체 내에서 독성을 나타내지는 않지만 생체조직 세포와의 결합 특성은 없고 단지 기계적 엉킴(morphological fixation)으로 생체 조직에 붙어 있게 되므로 오랜 시간이 지나면서 세포와 이식재료가 분리되는 현상이 있다. 사람의 수명이 점점 길어지면서 좀더 장기간 그리고 안정적으로 인체 내에서 견딜 수 있는 이식재료가 필요하게 되었다.(중략)

  • PDF

Novel Surface Modifications for Medical Applications

  • Park, Gi-Dong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.78-78
    • /
    • 2016
  • For the past three decades, extensive research has been performed in the surface design of new polymers for a variety of medical applications. Great progress in therapeutics and diagnostics can be attributed to these scientific advances in biomedical polymers. A variety of bioinert materials or bioactive materials using drugs, cells, and growth factors are widely utilized for the implants, devices and tissue regeneration. These materials provide an improved biocompatible materials to host, to significantly decrease or increase the host/tissue/blood response to the foreign materials. In the future, biomaterials will play a different role in modern therapeutics. New materials will be tailored to interact more on a protein and cellular level to achieve high degree of biocompatibility, biospecificity and bioacitivity. In this presentation, various biocompatible materials based on surface/bulk engineering will be demonstrated, which can be utilized as therapeutics implants and therapeutic vehicles for biologically active molecules such as cell, protein /peptide and gene.

  • PDF

Anticorrosion Coatings Obtained by Plasma Electrolytic Oxidation on Implant Metals and Alloys

  • Sinebryukhov, S.L.;Gnedenkov, S.V.;Khrisanfova, O.A.;Puz', A.V.;Egorkin, V.S.;Zavidnaya, A.G.
    • Corrosion Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.91-100
    • /
    • 2018
  • Development of biodegradable implants for treatment of complex bone fractures has recently become one of the priority areas in biomedical materials research. Multifunctional corrosion resistant and bioactive coatings containing hydroxyapatite $Ca_{10}(PO_4)_6(OH)_2$ and magnesium oxide MgO were obtained on Mg-Mn-Ce magnesium alloy by plasma electrolytic oxidation. The phase and elemental composition, morphology, and anticorrosion properties of the coatings were investigated by scanning electron microscopy, energy dispersive spectroscopy, potentiodynamic polarization, and electrochemical impedance spectroscopy. The PEO-layers were post-treated using superdispersed polytetrafluoroethylene powder. The duplex treatment considerably reduced the corrosion rate (>4 orders of magnitude) of the magnesium alloy. The use of composite coatings in inducing bioactivity and controlling the corrosion degradation of resorbable Mg implants are considered promising. We also applied the plasma electrolytic oxidation method for the formation of the composite bioinert coatings on the titanium nickelide surface in order to improve its electrochemical properties and to change the morphological structure. It was shown that formed coatings significantly reduced the quantity of nickel ions released into the organism.

Bone Ingrowth and Enhancement of Bone Bonding Strength at Interface between Bone and HA Coated Stainless Steel (HA 코팅된 스테인레스강과 뼈의 계면에서의 경조직 성장 및 결합력 향상)

  • Kim, C.S.;Kim, S.Y.;Kim, D.H.;Khang, G.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.05
    • /
    • pp.133-136
    • /
    • 1996
  • We investigated how hydroxyapatite (HA) coating onto a porous super stainless steel (S.S.S, 22Cr-20Ni-6Mo-0.25N) affects bone ingrowth in a dog transcortical femoral model. Implants were histologically evaluated after 4 and 48 weeks of implantation, and the bone bonding strength at the bone/implant interface was examined by employing the pull-out test. The direct osseous tissue bonding onto the HA-coated S.S.S was observed, but the uncoated stainless steels had thin fibrous tissue layers. The mean interface strength of the HA-coated S.S.S was 1.5 and 2.5 times greater than those of the S.S.S and the 316L SS after one year of implantation, respectively. In preliminary studies, no toxic responce was observed from a cytotoxicity test of the S.S.S, having similar corrosion resistance to titanium. Our results suggest that early osteoconductive nature of HA coating may induce long term osteointegration for a bioinert substrate.

  • PDF

Comparative evaluation of the efficacy of wound healing with and without dehydrated human amniotic/chorionic membrane in alveoloplasty: a pilot study

  • Gajul, Monica;Bhate, Kalyani;Awate, Sayali;Kakodkar, Pradnya;Shah, Sonal
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.47 no.4
    • /
    • pp.279-285
    • /
    • 2021
  • Objectives: Wound healing is an integral part of any surgical procedure. Appropriate wound closure is critical to any successful surgical procedure, especially intraoral procedures. Various factors aid in wound healing, both pharmacological and non-pharmacological. Dehydrated human amniotic/chorionic membrane (dHACM) is an emerging bioinert material that contains anti-inflammatory properties, angiogenetic properties, osteogenic potential, and various growth factors. The purpose of this study was to evaluate the efficacy of wound healing properties of dHACM in bilateral alveoloplasty patients. Materials and Methods: A prospective split-mouth study was conducted on 10 patients. Site A received sutures with dHACM and site B was sutured without dHACM. Wound healing was assessed with the Landry, Turnbull, and Howley Index. Results: Sites A and site B were compared. A P<0.05 and a test value of 22 was obtained, indicating a statistical difference between the two sites. Conclusion: Our study showed better healing with dHACM than without.

Effects of Wollastonite Coating on Surface Characteristics of Plasma Electrolytic Oxidized Ti-6Al-4V Alloy (플라즈마 전해 산화처리된 Ti-6Al-4V합금의 표면특성에 미치는 울라스토나이트 코팅효과)

  • Jaeeun Go;Jong Kook Lee;Han Cheol Choe
    • Corrosion Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.257-264
    • /
    • 2023
  • Ti-6Al-4V alloys are mainly used as dental materials due to their excellent biocompatibility, corrosion resistance, and chemical stability. However, they have a low bioactivity with bioinertness in the body. Therefore, they could not directly bond with human bone. To improve their applications, their bone bonding ability and bone formation capacity should be improved. Thus, the objective of this study was to improve the bioinert surface of titanium alloy substrate to show bioactive characteristics by performing surface modification using wollastonite powder. Commercial bioactive wollastonite powder was successfully deposited onto Ti-6Al-4V alloy using a room temperature spray process. It was found that wollastonite-coated layer showed homogeneous microstructure and uniform thickness. Corrosion resistance of Ti-6Al-4V alloy was also improved by plasma electrolytic oxidation treatment. Its wettability and bioactivity were also greatly increased by wollastonite coating. Results of this study indicate that both plasma electrolytic oxidation treatment and wollastonite coating by room temperature spray process could be used to improve surface bioactivity of Ti-6Al-4V alloy substrate.

Morphology of Bone-like Apatite Formation on Sr and Si-doped Hydroxyapatite Surface of Ti-6Al-4V Alloy after Plasma Electrolytic Oxidation

  • Yu, Ji-Min;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.79-79
    • /
    • 2017
  • Metallic biomaterials have been mainly used for the fabrication of medical devices for the replacement of hard tissue such as artificial hip joints, bone plates, and dental implants. Because they are very reliable on the viewpoint of mechanical performance. This trend is expected to continue. Especially, Ti and Ti alloys are bioinert. So, they do not chemically bond to the bone, whereas they physically bond with bone tissue. For their poor surface biocompatibility, the surface of Ti alloys has to be modified to improve the surface osteoinductivity. Recently, ceramic-like coatings on titanium, produced by plasma electrolytic oxidation (PEO), have been developed with calciumand phosphorus-enriched surfaces. A lso included the influences of coatings, which can accelerate healing and cell integration, as well as improve tribological properties. However, the adhesions of these coatings to the Ti surface need to be improved for clinical use. Particularly Silicon (Si) has been found to be essential for normal bone, cartilage growth and development. This hydroxyapatite, modified with the inclusion of small concentrations of silicon has been demonstrating to improve the osteoblast proliferation and the bone extracellular matrix production. Strontium-containing hydroxyapatite (Sr-HA) was designed as a filling material to improve the biocompatibility of bone cement. In vitro, the presence of strontium in the coating enhances osteoblast activity and differentiation, whereas it inhibits osteoclast production and proliferation. The objective of this work was to study Morphology of bone-like apatite formation on Sr and Si-doped hydroxyapatite surface of Ti-6Al-4V alloy after plasma electrolytic oxidation. Anodized alloys was prepared at 270V~300V voltages with various concentrations of Si and Sr ions. Bone-like apatite formation was carried out in SBF solution. The morphology of PEO, phase and composition of oxide surface of Ti-6Al-4V alloys were examined by FE-SEM, EDS, and XRD.

  • PDF