• 제목/요약/키워드: Biodegradable Resin

검색결과 44건 처리시간 0.022초

마이크로 광 조형기술을 이용한 인공지지체의 제작을 위한 생분해성 수지의 개발 및 경화 특성 파악 (The development of biodegradable resin for scaffold fabrication using micro-stereolithography and curing characteristics analysis of the resin)

  • 이진우;조동우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.147-148
    • /
    • 2006
  • A research on scaffold fabrication has been progressed in many research groups. However, the mechanical properties of existing biodegradable materials are still not satisfactory. But, PPF (poly (propylene fumarate)) has a good mechanical property in comparison to other biodegradable materials. Nevertheless, the viscosity of the synthesized PPF is too high to fabricate structures using micro-stereolithography. Therefore, the viscosity of the resin was made low by adding the diethyl fumarate and this material could be used in micro-stereolithography apparatus. Then, a photoinitiator was added for photo crosslinking of the DEF/PPF resin. 2.5D and 3D scaffolds were fabricated our system and curing characteristics of the resin were analyzed through the experiment.

  • PDF

환경표지 인증제도 개선에 대한 연구 -생분해성수지 인증제도를 중심으로- (An Research on Improvement of Eco-Labelling Certification -Focused on Certification System of Biodegradable Resin-)

  • 고영화;최강화;정승환
    • 품질경영학회지
    • /
    • 제42권2호
    • /
    • pp.165-177
    • /
    • 2014
  • Purpose: This study analyzes the strategical priority to improve eco-labelling certification system, focused on biodegradable resin. Methods: This study will come up with measures to operate the eco-Label certification system related to biodegradable products more effectively and efficiently by discovering various problems related to the system, using causal loop diagram and AHP analysis. Results: This study shows that the government should play more important role while firms could also serve their roles in the initial and stabilizing stages of the eco-labelling certification system, in order to vitalize the eco-Label certification system more effective. Conclusion: This study addresses strategic eco-labelling policies on governmental and firm's operation and providers guidance to practitioners in addressing strategic decision relating to eco-labelling certification system.

Biodegradable Starch-Based Resin Reinforced with Continuous Mineral Fibres-Processing, Characterisation and Mechanical Properties

  • Wittek, Thomas;Tanimoto, Toshio
    • Advanced Composite Materials
    • /
    • 제18권2호
    • /
    • pp.167-185
    • /
    • 2009
  • Environmental problems caused by extensive use of polymeric materials arise mainly due to lack of landfill space and depletion of finite natural resources of fossil raw materials like petroleum or natural gas. The substitution of synthetic petroleum-based resins with natural biodegradable resins appears to be one appropriate measure to remedy the above-mentioned situation. This study presents the development of a composite that uses environmentally degradable starch-based resin as matrix and natural mineral basalt fibres as reinforcement, and investigates the fibre's and the composite's mechanical properties. The tensile strength of single basalt fibres was verified by means of single fibre tensile tests and statistically investigated by means of a Weibull analysis. Prepreg sheets were manufactured by means of a modified doctor blade system and hot power press. The sheets were used to manufacture specimens with fibre volume contents ranging from 33% to 61%. Specimens were tested for tensile strength, flexural strength and interlaminar shear strength. Composites manufactured during this study exhibited tensile and flexural strength of up to 517 MPa and 157 MPa, respectively.

Green Composites. II. Environment-friendly, Biodegradable Composites Using Ramie Fibers and Soy Protein Concentrate (SPC) Resin

  • Nam Sung-Hyun;Netravali Anil N.
    • Fibers and Polymers
    • /
    • 제7권4호
    • /
    • pp.380-388
    • /
    • 2006
  • Fully biodegradable and environment-friendly green composite specimens were made using ramie fibers and soy protein concentrate (SPC) resin. SPC was used as continuous phase resin in green composites. The SPC resin was plasticized with glycerin. Precuring and curing processes for the resin were optimized to obtain required mechanical properties. Unidirectional green composites were prepared by combining 65% (on weight basis) ramie fibers and SPC resin. The tensile strength and Young's modulus of these composites were significantly higher compared to those of pure SPC resin. Tensile and flexural properties of the composite in the longitudinal direction were moderate and found to be significantly higher than those of three common wood varieties. In the transverse direction, however, their properties were comparable with those of wood specimens. Scanning electron microscope (SEM) micrographs of the tensile fracture surfaces of the green composite indicated good interfacial bonding between ramie fibers and SPC resin. Theoretical values for tensile strength and Young's modulus, calculated using simple rule of mixture were higher than the experimentally obtained values. The main reasons for this discrepancy are loss of fiber alignment, voids and fiber compression due to resin shrinking during curing.

생분해성 수지를 이용한 환경친화성 랩 개발에 관한 연구 (A Study on Development of Eco-friendly Wrap using Biodegradable Resin)

  • 임미진;심재호;최종문;김영식
    • 공업화학
    • /
    • 제16권6호
    • /
    • pp.800-808
    • /
    • 2005
  • 미생물에 의해 분해되는 랩제조용 복합수지를 개발하고, 이에 대한 제조과정과 물성에 대하여 연구하였다. 이런 목적을 위해 원재료 수지, 산화제, 활제의 종류와 사용량 등 같은 몇 가지 조건을 최적화하였다. 생분해성 랩을 제조하기 위한 복합수지는 polyester 계열에서 PBAS (아디프산, 숙신산 및 1.4-부탄디올의 3성분 공중합체)와 PBAST (숙진산, 아디프산, 디메틸테레프탈레이트 및 1.4-부탄디올의 4성분 공중합체)를 이용하였다. 또한 PBAS에서는 1차 산화방지제로는 Irganox 1010과 1076 (0.1 phrs), 2차 산화방지제로는 Irgafos TNPP (0.2 phrs), PBAST에서는 1차 산화방지제로 Irganox 1076 (0.1 phrs), 2차 산화방지제로 Mark PEP 36 (0.3 phrs)이 가장 좋았다. 수지의 가공성 향상을 위해서 사용하는 활제로는 PBAS에서는 glycerol monostearate, PBAST에서는 palmityl alcohol를 각각 0.8%와 1.0%를 사용하면 충분하였다. 제조된 랩의 안정성은 중금속 용출실험과 UTM을 이용한 인장강도 및 신축률을 측정하여 평가하였다. 시제품에 대한 분해률을 측정하기 위해서 동일 조건의 토양에 매립하여 시간경과에 따른 분해정도를 비교한 결과 40일 정도가 경과하면 약 60%가 분해하는 것으로 나타났다.

흡유제인 생분해석 Poly(2-ethylhexylacrylate)의 제조 (Preparation of Biodegradable Poly(2-ethylhexylacrylate) as Oil Sorbers)

  • 유수용;이동환;감상규;이민규
    • 한국환경과학회지
    • /
    • 제19권1호
    • /
    • pp.97-103
    • /
    • 2010
  • The biodegradable oil absorption resin was prepared by the suspension polymerization of the modified starch and 2-ethylhexyl acrylate (2-EHA). The highest oil-absorption capacity of B-PEHA prepared showed at the condition of the modified starch content of 10 g and ethyleneglycol dimethacrylate (EGDMA) of 0.133 wt%. Its maximum oil absorption capacity per g of oil absorber was chloroform 30.88 g, toluene 19.75 g, xylene 18.78 g, tetrahydofuran (THF) 15.96 g, octane 11.43 g, hexane 9.5 g diesel oil 12.80 g, and kerosene 13.79 g, respectively. The biodegradation of poly-2-ethylhexylacrylate (B-PEHA) determined by enzymatic hydrolysis showed approximately 17~20%. The results showed that the preparation of the biodegradable oil absorption resin is available using the modified starch.

Effect of molding condition on tensile properties of hemp fiber reinforced composite

  • Takemura, K.;Minekage, Y.
    • Advanced Composite Materials
    • /
    • 제16권4호
    • /
    • pp.385-394
    • /
    • 2007
  • In this study, the effect of molding condition on the tensile properties for plain woven hemp fiber reinforced green composite was examined. The tensile properties of the composite were compared with those of the plain woven jute fiber composite fabricated by the same process. Emulsion type biodegradable resin or polypropylene sheet was used as matrix. The composites were processed by the compression molding where the molding temperature and its heating time were changed from 160 to $190^{\circ}C$ and from 15 to 25 min, respectively. The following results were obtained from the experiment. The tensile property of hemp fiber reinforced polypropylene is improved in comparison with polypropylene bulk. The strength of composite is about 2.6 times that of the resin bulk specimen. Hemp fiber is more effective than jute fiber as reinforcement for green composite from the viewpoint of strength. The molding temperature and time are suitable below $180^{\circ}C$ and 20 min for hemp fiber reinforced green composite. Hemp fiber green composite has a tendency to decrease its tensile strength when fiber content is over 50 wt%.

In vitro wear behavior between enamel cusp and three aesthetic restorative materials: Zirconia, porcelain, and composite resin

  • Jang, Yong-Seok;Nguyen, Thuy-Duong Thi;Ko, Young-Han;Lee, Dae-Woo;Baik, Byeong Ju;Lee, Min-Ho;Bae, Tae-Sung
    • The Journal of Advanced Prosthodontics
    • /
    • 제11권1호
    • /
    • pp.7-15
    • /
    • 2019
  • PURPOSE. The aim of this study was to identify the effects of three aesthetic restorative materials on the wear between tooth and restoration by a pin-on-disk manner. MATERIALS AND METHODS. Six aesthetic restorative materials were used to prepare disk specimens for wear test, which were Lava Zirconia as zirconia group, Vintage MP and Cerabien ZR as veneering porcelain group, Gradia Direct microhybrid composite containing prepolymerized fillers, Filtek Z250 microhybrid composite containing zirconia glass and colloidal silica particles, and Filtek Z350 nanocomposite as composite resin group. Vertical loss of the worn cusp, change of the surface roughness of the restoration materials, and the surface topography were investigated after wear test under 9.8-N contact load. RESULTS. The porcelain groups (Vintage MP and Cerabien ZR) caused the largest vertical loss of teeth when compared with those of the composite resin and zirconia groups, and Filtek Z250 microhybrid composite results in the second-largest vertical loss of teeth. The surface of Filtek Z350 nanocomposite was deeply worn out, but visible wear on the surface of the zirconia and Gradia Direct microhybrid composite was not observed. When the zirconia surface was roughened by sand-blasting, vertical loss of teeth considerably increased when compared with that in the case of fine polished zirconia. CONCLUSION. It was identified that microhybrid composite resin containing a prepolymerized filler and zirconia with reduced surface roughness by polishing were the most desirable restorative materials among the tested materials to prevent the two-body wear between aesthetic restorative material and tooth.

Properties and particles dispersion of biodegradable resin/clay nanocomposites

  • Okada, Kenji;Mitsunaga, Takashi;Nagase, Youichi
    • Korea-Australia Rheology Journal
    • /
    • 제15권1호
    • /
    • pp.43-50
    • /
    • 2003
  • In this study, two types of biodegradable resins-based clay nanocomposites, in which organic montmorillonite clay was filled, were prepared by the direct melt blending method. In order to characterize the nanocomposite structure, wide-angle X-ray diffraction (WAXD) and TEM observation were performed. Characterization of the nanocomposites shows that intercalated and partially exfoliated structures were generated by the melt blending method. Mechanical and rheological properties of the nanocomposites were measured respectively. For the mechanical properties, there were improvements in tensile strength and Young's modulus of the nanocomposites due to the reinforcement of nanoparticles. The rheological behaviors of the nanocomposites were significantly affected by the degree of the dispersion of the organoclay. The storage modulus of the nanocomposites was measured and the degree of the dispersion of the organoclay was evaluated from the value of the terminal slope of the storage modulus. In addition, the quantity of the shear necessary for making the nanocomposite for melt intercalation method was estimated from the relationship between the value of the terminal slope of the storage modulus and the applied shear.

Development and mechanical properties of bagasse fiber reinforced composites

  • Cao, Yong;Goda, Koichi;Shibata, Shinichi
    • Advanced Composite Materials
    • /
    • 제16권4호
    • /
    • pp.283-298
    • /
    • 2007
  • Environment-friendly composites reinforced with bagasse fiber (BF), a kind of natural fiber as the remains from squeezed sugarcane, were fabricated by injection molding and press molding. As appropriate matrices for injection molding and press molding, polypropylene (PP) and polycaprolactone-cornstarch (PCL-C) were selected, as a typical recyclable resin and biodegradable resin, respectively. The mechanical properties of BF/PP composites were investigated in view of fiber mass fraction and injection molding conditions. And the mechanical properties and the biodegradation of BF/PCL composites were also evaluated. In the case of injection molding, the flexural modulus increased with an increase in fiber mass fraction, and the mechanical properties decreased with an increase in cylinder temperature due to the thermal degradation of BF. The optimum conditions increasing the flexural properties and the impact strength were $90^{\circ}C$ mold temperature, 30 s injection interval, and in the range of 165 to $185^{\circ}C$ cylinder temperature. On the other hand, as to BF/PCL-C fully-green composites, both the flexural properties and the impact strength increased with an increase in fiber mass fraction. It is considered that the BF compressed during preparation could result in the enhancement in mechanical properties. The results of the biodegradability test showed the addition of BF caused the acceleration of weight loss, which increased further with increasing fiber content. This reveals that the addition and the quantities of BF could promote the biodegradation of fully-green composites.