Green Composites. II. Environment-friendly, Biodegradable Composites Using Ramie Fibers and Soy Protein Concentrate (SPC) Resin

  • Nam Sung-Hyun (Fiber Science Program, Cornell University) ;
  • Netravali Anil N. (Fiber Science Program, Cornell University)
  • Published : 2006.12.30

Abstract

Fully biodegradable and environment-friendly green composite specimens were made using ramie fibers and soy protein concentrate (SPC) resin. SPC was used as continuous phase resin in green composites. The SPC resin was plasticized with glycerin. Precuring and curing processes for the resin were optimized to obtain required mechanical properties. Unidirectional green composites were prepared by combining 65% (on weight basis) ramie fibers and SPC resin. The tensile strength and Young's modulus of these composites were significantly higher compared to those of pure SPC resin. Tensile and flexural properties of the composite in the longitudinal direction were moderate and found to be significantly higher than those of three common wood varieties. In the transverse direction, however, their properties were comparable with those of wood specimens. Scanning electron microscope (SEM) micrographs of the tensile fracture surfaces of the green composite indicated good interfacial bonding between ramie fibers and SPC resin. Theoretical values for tensile strength and Young's modulus, calculated using simple rule of mixture were higher than the experimentally obtained values. The main reasons for this discrepancy are loss of fiber alignment, voids and fiber compression due to resin shrinking during curing.

Keywords

References

  1. B. V. Kokta, R. Chen, C. Daneault, and J. L. Valade, Polym. Compos., 4, 229 (1983) https://doi.org/10.1002/pc.750040407
  2. C. Pavithran, P. S. Mukjerjee, M. Brahmakumar, and A. D. Damodaran, J. Mater. Sci., 26, 455 (1991) https://doi.org/10.1007/BF00576542
  3. K. Joseph, S. Thomas, C. Pavithran, and M. Brahmakumar, J. Appl. Polym. Sci., 47, 1731 (1993) https://doi.org/10.1002/app.1993.070471003
  4. The Corporate Units in the Daimler-Benz Group, Daimler-Benz High Tech Report, 2, 1 (1995)
  5. A. K. Mohanty and M. Misra, Polym-Plast. Technol. Eng., 34, 729 (1995) https://doi.org/10.1080/03602559508009599
  6. K. Joseph, S. Thomas, and C. Pavithran, Polymer, 37, 5139 (1996) https://doi.org/10.1016/0032-3861(96)00144-9
  7. J. H. Pedro and D. J. A. Manuel, J. Appl. Polym. Sci., 65, 197 (1997) https://doi.org/10.1002/(SICI)1097-4628(19970705)65:1<197::AID-APP24>3.0.CO;2-#
  8. M. Wollerdorfer and H. Bader, Industrial Crops and Products, 8, 105 (1998) https://doi.org/10.1016/S0926-6690(97)10015-2
  9. S. Luo and A. N. Netravali, J. Mater. Sci., 34, 3709 (1999) https://doi.org/10.1023/A:1004659507231
  10. S. Luo and A. N. Netravali, Polym. Composite., 20, 367 (1999) https://doi.org/10.1002/pc.10363
  11. A. K. Mohanty, M. Misra, and G. Hinrichsen, Macromol. Mater. Eng., 276, 1 (2000) https://doi.org/10.1002/(SICI)1439-2054(20000301)276:1<1::AID-MAME1>3.0.CO;2-W
  12. S. Luo and A. N. Netravali, J. Adhes. Sci. Technol., 15, 423 (2001) https://doi.org/10.1163/156856101300157533
  13. P. Lodha and A. N. Netravali, J. Mater. Sci., 37, 3657 (2002) https://doi.org/10.1023/A:1016557124372
  14. S. Nam, M.S. Thesis, Cornell University, Ithaca, 2002
  15. S. Nam and A. N. Netravali, J. Adhes. Sci. Technol., 18, 1063 (2004) https://doi.org/10.1163/1568561041257504
  16. P. Lodha and A. N. Netravali, Polym. Compos., 26, 647 (2005) https://doi.org/10.1002/pc.20128
  17. P. Lodha and A. N. Netravali, Compos. Sci. Technol., 65, 1211 (2005) https://doi.org/10.1016/j.compscitech.2004.12.036
  18. S. Chabba and A. N. Netravali, J. Mater. Sci., 40, 6263 (2005) https://doi.org/10.1007/s10853-005-3142-x
  19. S. Chabba and A. N. Netravali, J. Mater. Sci., 40, 6275 (2005) https://doi.org/10.1007/s10853-005-3143-9
  20. S. Nam and A. N. Netravali, Fibers and Polymers, 7, 372 (2006) https://doi.org/10.1007/BF02875769
  21. Y-P. Ly, L. A. Johnson, and J. Jane, 'Biopolymers from Renewable Resources' (D. L. Kaplan Ed.), p.144, Springer, New York, 1998
  22. T. E. Creighton, 'Proteins: Structure and Molecular Properties', 2nd ed. p. 1, Freeman, New York, 1993
  23. J. C. Cheftel, J.-L. Cuq, and D. Lorient, 'Food Chemistry' (O. R. Fennema Ed.), pp.245, 279, 289, 336, and 343, Marcel Dekker Inc, New York, 1985
  24. F. Liang, Y. Q. Wang, and X. S. Sun, J. Polym. Eng., 19, 383 (1999)
  25. J. J. Kester and O. R. Fennema, Food Technol., 40, 47 (1986)
  26. J. Paetau, C. Z. Chen, and J. L. Jane, Ind. Eng. Chem. Res., 33, 1821 (1994) https://doi.org/10.1021/ie00031a023
  27. A. Gennadios, V. M. Ghorpade, C. L. Weller, and M. A. Hanna, Trans. ASAE, 39, 575 (1996)
  28. S. F. Thames and L. Zhou 'Proceedings of the International Conference on Composites Engineering-5', Las Vegas, p.887, 1998
  29. A. Gennadios, A. H. Brandenburg, C. L. Weller, and R. F. Testin, J. Agric. Food Chem., 41, 1835 (1993) https://doi.org/10.1021/jf00035a006
  30. H. M. Lai, G. W. Padua, and A. H. Wei, Cereal Chem, 74, 49 (1995) https://doi.org/10.1094/CCHEM.1997.74.1.49
  31. X. Z. Sun and K. Bian, J. Am. Oil. Chem. Soc., 76, 977 (1999) https://doi.org/10.1007/s11746-999-0115-2
  32. J. W. Rhim, A. Gennadios, A. Handa, C. L. Weller, and M. A. Hanna, J. Agric. Food Chem., 48, 4937 (2000) https://doi.org/10.1021/jf0005418
  33. F. Ayhllon-Meixueiro, C. Vaca-Garcia, and F. Silvestre, J. Agric. Food Chem., 48, 3032 (2000) https://doi.org/10.1021/jf9907485
  34. X. Q. Mo, J. Hu, X. S. Sun, and J. A. Ratto, Ind. Crop. Prod., 14, 1 (2001) https://doi.org/10.1016/S0926-6690(00)00083-2
  35. X. Q. Mo and X. Z. Sun, J. Am. Oil. Chem. Soc., 78, 867 (2001) https://doi.org/10.1007/s11746-001-0357-1
  36. N. S. Hettiarachchy, U. Kalapathy, and D. J. Myers, J. Am. Oil. Chem. Soc., 72, 1461 (1995) https://doi.org/10.1007/BF02577838
  37. X. Z. S. Sun, H. R. Kim, and X. Q. Mo, J. Am. Oil. Chem. Soc., 76, 117 (1999) https://doi.org/10.1007/s11746-999-0057-8
  38. J. Gueguen, G. Viroben, P. Noireaux, and M. Subirade, Ind. Crop. Prod., 7, 149 (1998) https://doi.org/10.1016/S0926-6690(97)00043-5
  39. R. N. Obrien and K. Hartman, J. Polym. Sci. Part C Polymer Symposium, 34, 293 (1971)
  40. B. D. Agarwal and L. J. Broutman, 'Analysis and Performance of Fiber Composites', p.15, John Wiley & Sons, New York, 1980
  41. D. Hull, 'An Introduction to Composite Materials', pp. 36-38, Cambridge University Press, Cambridge, 1981
  42. B. D. Harper, G. H. Staab, and R. S. Chen, J. Compos. Mater., 21, 280 (1987) https://doi.org/10.1177/002199838702100306
  43. J. M. Tang, W. I. Lee, and G. S. Springer, J. Compos. Mater., 21, 421 (1987) https://doi.org/10.1177/002199838702100502
  44. F. Garcia-Zetina, E. Martinez, A. Alvarez-Castillo, and V. M. Castano, J. Reinf. Plast. Comp., 14, 641 (1995)