• Title/Summary/Keyword: Biocontrol potential

Search Result 189, Processing Time 0.035 seconds

Biocontrol of Vegetables Damping-off by Bacillis ehimensis YJ-37 (Bacillus ehimensis YJ-37에 의한 채소류 모잘록병의 생물학적 방제)

  • 김진호;최용화;강상재;이인구;주길재
    • Journal of Life Science
    • /
    • v.12 no.4
    • /
    • pp.416-422
    • /
    • 2002
  • Bacillus ehimensis YJ-37 was observed as a potential biological agent to control the occurrence of diseases and plant growth.promoting rhizobacteria (PGPR). Population density of B. ehimensis YJ-37 were higher 1.2~2 times in main roots and lateral roots than from nonrhizosphere soil and persisted around 10$^4$g root on the watermelon and radish root system upto 30 days after growing in pot condition. As a PGPR, B. ehimensis YJ-37 enhanced plant growth of watermelon and radish by soil treatment. The leaf area, hypocotyl length, root length and dry weight of radish were about 85, 33, 23 and 89% more than that of untreated plant, respectively. In case of watermelon were about 63, 27, 25 and 69% more than that of untreated plant, respectively. Biocontrol of damping-off in watermelon and radish caused by Rhizoctonia solani AG-4 and Pythium ultimum were carried out in pots using 3. ehimensis YJ-37. The results showed that might contribute to it's suppression of damping-off disease in field plants.

Identification of 2-methylbutyric Acid as a Nematicidal Metabolite, and Biocontrol and Biofertilization Potentials of Bacillus pumilus L1

  • Lee, Yong-Seong;Cho, Jeong-Yong;Moon, Jae-Hak;Kim, Kil-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.4
    • /
    • pp.401-408
    • /
    • 2016
  • The present study described the isolation of 2-methylbutyric acid (2-MBA) produced from Bacillus pumilus L1, to subsequently investigate its nematicidal activity for the control of the root-knot nematode. The results showed that 2-MBA could be purified by chromatographic techniques and was identified using nuclear magnetic resonance and liquid chromatography-mass spectrometry. Crude extract and partially purified compounds had a significant effect on the inhibition of egg hatchability and second-stage juvenile (J2) mortality. A dose-dependent effect of 2-MBA was observed for J2 mortality and egg hatchability. Egg hatchability was 69.2%, 59.9%, 32.7%, and 0.0% at 125, 250, 500, and $1000{\mu}g\;mL^{-1}$ of 2-MBA after 4 d of incubation, respectively. Meanwhile, J2 mortality was in the range of 24.4%-100.0% after 2 d of incubation, depending on the concentrations of 2-MBA used. A pot experiment also demonstrated that treatment of B. pumilus L1 culture caused a significant reduction in the number of galls, egg masses, and J2 population than that of the tap water (TW) control. However, as the B. pumilus L1 culture concentration was decreased, the efficacy of nematode control by treatment of B. pumilus L1 culture was reduced compared to that of TW. B. pumilus L1 inoculation at different concentrations also promoted cucumber plant growth. Therefore, our study demonstrated the potential of 2-MBA from B. pumilus L1 as a biocontrol agent against the root-knot nematode and a plant growth promoter for cucumber plants.

Isolation and Identification of Rice Root Endophytic Antagonistic Serratia marcescens (벼 뿌리 내생 항균성 Serratia marcescens의 분리 및 동정)

  • Lee, Sook-Kyung;Song, Wan-Yeob;Kim, Hyung-Moo
    • Research in Plant Disease
    • /
    • v.10 no.1
    • /
    • pp.63-68
    • /
    • 2004
  • Twenty-three strains of Serratia sp., isolated from surface-sterilized rice roots collected in Chonbuk and Chungnam province, were identified and characterized. They were Gram-negative, rod shaped and red pigmented typically and their endophytism was confirmed by inoculation and reisolation of the strains in planta. Their antifungal activity against 4 rice pathogenic fungi was compared and ranged from 62.4 to 85.2% against Rhizoctonia solani and 68.0 to 88.5% against Pyricularia grisea. Among the 23 strains tested, strain Rsm220 showed the strongest inhibition activity against 4 pathogenic fungi. The strain was, therefore, selected as a biocontrol candidate for both the pathogens and its bacteriological characteristics and 165 rDNA sequences were analyzed. Phenotypic and biochemical characteristics of the selected Rsm220 were highly related to the type strain of S. marcescens and 165 rDNA sequencing of Rsm220 showed a homology of 98.2% to the type strain of S. marcescens. The strain Rsm220 was identified as S. marcescens and the inhibition result of this endophytic strain indicates that it is a potential biocontrol agent for R. solani and R grisea.

Bacillus spp. as Biocontrol Agents of Root Rot and Phytophthora Blight on Ginseng

  • Bae, Yeoung-Seuk;Park, Kyungseok;Kim, Choong-Hoe
    • The Plant Pathology Journal
    • /
    • v.20 no.1
    • /
    • pp.63-66
    • /
    • 2004
  • Ginseng (Panax ginseng) is one of the most widely cultivated medicinal herbs in Korea. However, yield losses reached up to 30-60% due to various diseases during 3 or 5 years of ginseng cultivation in the country. Therefore, successful production of ginseng roots depends primarily on the control of diseases. The objective of this study was to select potential biocontrol agents from rhizobacteria isolated from various plant internal root tissues for the control of multiple ginseng diseases as an alternative to fungicides. Among 106 Bacillus strains, two promising biocontrol agents, Bacillus pumilus strain B1141 and Paenibacillus lentimobus strain B1146, were selected by screening against root rot of ginseng caused by Cylindrocarpon destructans in a greenhouse. Pre-inoculation of selected isolates to seed or l-year-old root of ginseng resulted in stimulation of shoot and/or root growth of seedlings, and successfully controlled root rot caused by C. destructans (P<0.05). Furthermore, drenching of cell suspension of the selected isolates on seedling-growing pots reduced the incidence of Phytophthora blight after the seedlings were challenged with zoospores of Phytophthora cactorum (P<0.05). P. lentimorbus strain B1146 showed antifungal activity against various soil-borne pathogens in vitro, while B. pumilus strain B1141 did not show any. Results of this study suggest that some rhizobacteria can induce resistance against various plant diseases on ginseng.

Biocontrol Characteristics of Bacillus Species in Suppressing Stem Rot of Grafted Cactus Caused by Bipolaris cactivora

  • Bae, Sooil;Kim, Sang Gyu;Kim, Young Ho
    • The Plant Pathology Journal
    • /
    • v.29 no.1
    • /
    • pp.42-51
    • /
    • 2013
  • One of the most important limiting factors for the production of the grafted cactus in Korea is the qualitative and quantitative yield loss derived from stem rots especially caused by Bipolaris cactivora. This study is aimed to develop microbial control agents useful for the control of the bipolaris stem rot. Two bacteria (GA1-23 and GA4-4) selected out of 943 microbial isolates because of their strong antibiotic activity against B. cactivora were identified as Bacillus subtilis and B. amyloliquefaciens, respectively, by the cultural characteristics, Biolog program and 16S rRNA sequencing analyses. Both bacterial isolates significantly inhibited the conidial germination and mycelial growth of the pathogen with no significant difference between the two, of which the inhibitory efficacies varied depending on the cultural conditions such as temperature, nutritional compositions and concentrations. Light and electron microscopy of the pathogen treated with the bacterial isolates showed the inhibition of spore germination with initial malformation of germ tubes and later formation of circle-like vesicles with no hyphal growth and hyphal disruption sometimes accompanied by hyphal swellings and shrinkages adjacent to the bacteria, suggesting their antibiotic mode of antagonistic activity. Control efficacy of B. subtilis GA1-23 and B. amyloliquefaciens GA4-4 on the cactus stem rot were not as high as but comparable to that of fungicide difenoconazole when they were treated simultaneously at the time of pathogen inoculation. All of these results suggest the two bacterial isolates have a good potential to be developed as biocontrol agents for the bipolaris stem rot of the grafted cactus.

A Technique for the Prevention of Greenhouse Whitefly (Trialeurodes vaporariorum) Using the Entomopathogenic Fungus Beauveria bassiana M130

  • Kim, Chang-Su;Lee, Jung-Bok;Kim, Beam-Soo;Nam, Young-Ho;Shin, Kee-Sun;Kim, Jin-Won;Kim, Jang-Eok;Kwon, Gi-Seok
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • The possibility of using hyphomycete fungi as suitable biocontrol agents against greenhouse whitefly has led to the isolation of various insect pathogenic fungi. Among them is Beauveria bassiana, one of the most studied entomopathogenic fungi. The objective of this study was to use B. bassiana M130 as an insecticidal agent against the greenhouse whitefly. M130 isolated from infected insects is known to be a biocontrol agent against greenhouse whitefly. Phylogenetic classification of M130 was determined according to its morphological features and 18S rRNA sequence analysis. M130 was identified as B. bassiana M130 and showed chitinase (342.28 units/ml) and protease (461.70 units/ml) activities, which were involved in the invasion of the host through the outer cuticle layer, thus killing them. The insecticidal activity was 55.2% in petri-dish test, 84.6% in pot test, and 45.3% in field test. The results of this study indicate that B. bassiana has potential as a biological agent for the control of greenhouse whitefly to replace chemical pesticides.

Paenibacillus elgii SD17 as a Biocontrol Agent Against Soil-borne Turf Diseases

  • Kim, Dal-Soo;Rae, Cheol-Yong;Chun, Sam-Jae;Kim, Do-Hyung;Choi, Sung-Won;Choi, Kee-Hyun
    • The Plant Pathology Journal
    • /
    • v.21 no.4
    • /
    • pp.328-333
    • /
    • 2005
  • Paenibacillus elgii SD17 (KCTC $10016BP^T$=NBRC $100335^T$) was recently reported as a new species. Based on its inhibitory activity to Thanatephorus cucumeris AG1-1, strain SD17 was further evaluated for its potential as a biocontrol agent against soil-borne diseases of turf grasses in Korea. P. elgii SD17 showed a broad spectrum of antimicrobial activity in vitro test and suppressed development of turf grass diseases; Pythium blight caused by Pythium aphanidermatum and brown patch caused by T. cucumeris AG1-1 on creeping bentgrass (Agrostis palustris) in the growth chamber tests. Under a condition for massive culture in a 5,000 L fermenter, P. elgii SD17 reached $6.4{\times}10^8$ spores/ml that resulted in approximately $1.0{\times}10^7$ cfu/g when formulated into a granule formulation (GR) using the whole culture broth instead of water. Using the GR formulation, biocontrol activity of P. elgii SD17 was confirmed. In the growth chamber tests, the GR formulation was effective against brown patch and Pythium blight with similar level of disease severity compared to each of the standard fungicides at the application rates of 10 g/$m^2$ or above. In the field tests, compared to each untreated control, the GR formulation also effectively controlled Pythium blight, brown patch and large patch at all the application rates of 5, 10 and 20 g/$m^2$, respectively, without significant response by the application rates. However its performance was inferior to each of the standard chemical fungicides. Based on these results, we consider this GR formulation of P. elgii SD17 as an effective biocontol agent to suppress Pythium blight, brown patch and large patch of turf grasses in Korea.

Effect of a Bacterial Grass Culture on the Plant Growth and Disease Control in Tomato

  • Lee, Yong Seong;Naing, Kyaw Wai;Kim, Kil Yong
    • Research in Plant Disease
    • /
    • v.23 no.4
    • /
    • pp.295-305
    • /
    • 2017
  • This study aimed to investigate the plant growth-promoting and biocontrol potential of a grass culture with Paenibacillus ehimensis KWN8 on tomato. For this experiment, treatments of a chemical fertilizer (F), a bacterial grass culture (G), a 1/3 volume of G plus 2/3 F (GF), and F plus a synthetic fungicide (FSf) were applied to tomato leaves and roots. The result showed that the severity of Alternaria solani and Botrytis cinerea symptoms were significantly reduced after the application of the bacterial grass culture (G and GF) and FSf. In addition, root mortality in G and GF was lower compared to F. Tomato plants treated with G or GF had better vegetative growth and yield compared to F. Application of G affected the fungal and bacterial populations in the soil. In conclusion, treatment with a bacterial grass culture decreased disease severity and increased tomato growth parameters. However, there were no statistically significant correlations between disease occurrence and tomato yields. This experiment presents the possibility to manage diseases of tomato in an environmentally friendly manner and to also increase the yield of tomato by using a grass culture broth containing P. ehimensis KWN38.

Beneficial Effects of Fluorescent Pseudomonads on Seed Germination, Growth Promotion, and Suppression of Charcoal Rot in Groundnut (Arachis hypogea L.)

  • Shweta, Bhatia;Maheshwari, Dinesh Kumar;Dubey, Ramesh Chand;Arora, Daljit Singh;Bajpai, Vivek K.;Kang, Sun-Chul
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.9
    • /
    • pp.1578-1583
    • /
    • 2008
  • Rhizobacteria are used as inoculants to enhance crop yield and for biological control of fungal pathogens. Fluorescent pseudomonads isolated from the rhizosphere of groundnut showed suppression of the phytopathogen Macrophomina phaseolina that causes charcoal rot of groundnut, an economically important agroproduct. Two strains of fluorescent pseudomonads, designated as PS1 and PS2, were selected as a result of in vitro antifungal activity. After 5 days of incubation at $28{\pm}1^{\circ}C$, both PS1 and PS2 caused clear inhibition zones in dual cultures, restricting the growth of M. phaseolina by 71 % and 74%, respectively. Both the strains were capable of producing siderophores, indole acetic acid, and hydrocyanic acid, and causing phosphate solubilization under normal growth conditions. These strains, when used as inoculants in groundnut, enhanced germination up to 15% and 30% with subsequent increase in grain yield by 66% and 77%, respectively. Conversely, when the pathogen alone was tested 57% decrease in yield was recorded. Thus the studies revealed the potential of the two pseudomonads not only as biocontrol agents against M. phaseolina, but also as a good growth promoter for groundnut.