DOI QR코드

DOI QR Code

Isolation and Identification of Rice Root Endophytic Antagonistic Serratia marcescens

벼 뿌리 내생 항균성 Serratia marcescens의 분리 및 동정

  • 이숙경 (전북대학교 농생물학과) ;
  • 송완엽 (전북대학교 농업과학기술연구소) ;
  • 김형무 (전북대학교 농생물학과)
  • Published : 2004.03.01

Abstract

Twenty-three strains of Serratia sp., isolated from surface-sterilized rice roots collected in Chonbuk and Chungnam province, were identified and characterized. They were Gram-negative, rod shaped and red pigmented typically and their endophytism was confirmed by inoculation and reisolation of the strains in planta. Their antifungal activity against 4 rice pathogenic fungi was compared and ranged from 62.4 to 85.2% against Rhizoctonia solani and 68.0 to 88.5% against Pyricularia grisea. Among the 23 strains tested, strain Rsm220 showed the strongest inhibition activity against 4 pathogenic fungi. The strain was, therefore, selected as a biocontrol candidate for both the pathogens and its bacteriological characteristics and 165 rDNA sequences were analyzed. Phenotypic and biochemical characteristics of the selected Rsm220 were highly related to the type strain of S. marcescens and 165 rDNA sequencing of Rsm220 showed a homology of 98.2% to the type strain of S. marcescens. The strain Rsm220 was identified as S. marcescens and the inhibition result of this endophytic strain indicates that it is a potential biocontrol agent for R. solani and R grisea.

벼에서 문제시되는 도열병과 잎집무의마름병을 생물학적으로 방제하기 위해 병원균과 생태학적 지위가 비슷한 벼 뿌리에서 내생하는 S. marcescens 23 균주를 분리하였다. 선발 균주들을 공시하여 R. solani와 P. grisea에 대한 길항능력을 검정하여 R. solani와 P. grisea에 각각 83.9%. 88.3%의 높은 억제율을 보인 RSm220 균주를 선발하였다. 선발된 RSm220은 생리ㆍ생화학적 특성 검정결과 S. marcescens type strain과 높은 상관성을 나타내었고. 16S rDNA sequencing에 의한 계통 분석에 의해 S. marcescens의 16S rDNA sequence에 98.2% 유사성을 나타내어 S. marcescens로 동정되었다 내생성 S. marcescens RSm220은 벼 도열병과 잎집무늬마름병에 대한 생물학적 방제제로의 사용이 가능할 것으로 사료된다.

Keywords

References

  1. Akutsu, K., Hirata, A., Yamamoto, M., Hirayae, K., Okayama,S. and Hibi, T. 1993. Growth inhibition of Botrytis spp. by Serratia marcescens B2 isolated from tomato phylloplane. Ann. Phytopathol. Soc. Jpn. 59: 18-25 https://doi.org/10.3186/jjphytopath.59.18
  2. Balows, A., Truper, H. G., Dworkin, M., Harder, W.and Schleifer, K. H. 1992. A handbook on the biology of bacteria: Ecophysiology, isolation, identification, application. Pages 2822-2848 in The prokaryotes. Second edition
  3. Barraquio, W. L., Revilla, L. and Ladha, J. K. 1997. Isolation of endophyticdiazotrophic bacteriafrom wetlandrice. Plant and Soil 194: 15-24 https://doi.org/10.1023/A:1004246904803
  4. Boddey, R. M., de Oliveira, O. C., Urquiaga, S., Reis, V. M., Olivares, F. L., Baldani, V. L. D. and Dobereiner, J. 1995. Biological nitrogen fixation associated with sugar cane and rice: contribution and prospects for improvement. Plant and Soil 174: 195-209 https://doi.org/10.1007/BF00032247
  5. Budi, S. W., Tuinen, D. V., Arnould, C. and Gianinazzi, S. 2000. Hydrolytic enzyme activity of Paenibacillus sp. strain B2 and effects of the antagonistic bacterium on cell integrity of two soil-borne pathogenic fungi. Appled soil ecology 15: 191-199 https://doi.org/10.1016/S0929-1393(00)00095-0
  6. Egener, T, Hurek, T. and Reinhold-Hurek, B. 1999. Endophytic expression of nif genes of Azoacus sp. strain BH72 in rice roots. Mol. Plant-Microb. Interact. 12: 813 https://doi.org/10.1094/MPMI.1999.12.9.813
  7. Fisher, P J., Petrini, O. and Lappin, H. M. 1992. The distribution of some fungal and bacterial endophyte in maize (Zea mays L.). New Phytologist 122: 299-305 https://doi.org/10.1111/j.1469-8137.1992.tb04234.x
  8. Press, C. M., Wilson, M., Tuzun, S. and Kloepper, J. W 1997. Salicylic acid produced by S. marcescens 90-166 is not the primary determinant of induced systemic resistance in cucumber or tobacco. Mol. Plant-Microb. Interact. 10: 761-768 https://doi.org/10.1094/MPMI.1997.10.6.716
  9. Frommel, M. I., Nowark, J. and Lazarovits, G. 1991. Growth enhancement and developmental modifications of in vitro grown potato (Solanum tuberosum sp. tuberosum) as affected by a nonflourescent Pseudomonas sp. Plant Physiol. 96: 928-936 https://doi.org/10.1104/pp.96.3.928
  10. Germida, J. J., Siciliano, S. D., de Freitas, R. and Seib, A M. 1998. Diversity of root-associated bacteria associated with field-grown canola (Brossica napus L.) and wheat (Triticum aestivum L.). FEMS Microbiol. Ecol. 26: 43-50 https://doi.org/10.1111/j.1574-6941.1998.tb01560.x
  11. Gyaneshwar, P., James, E. K., Mathan, N., Reddy, PM., Reinhold-hurek, B. and Ladha, J. K. 2001. Endophytic colonization of rice by a diazotrophic strain of Serratia marcescens. Appl. Environ. Microbiol. 183: 2634-2645
  12. Hallmann, J., Quadt-Hallmann, A, Mahaffee, W. F. and Kloepper, J. W 1997. Bacterial endophytes in agricultural crops. Can. J. Microbiol. 43: 895-914 https://doi.org/10.1139/m97-131
  13. Hollis, J. P. 1951. Bacteria in healthy potato tissue. Phytopathology 41: 350-366
  14. Hurek, T., Reinhold-Hurek, B., van Montagu, M. and Kellenberger, E. 1994. Root colonization and systemic spreading of Azoacus sp. strain BH72 in grasses. J. Bacteriol. 176: 1913-1923 https://doi.org/10.1128/jb.176.7.1913-1923.1994
  15. James, E. K. and Olivares, F. L. 1998. Infection and colonization of sugar cane and other graminaceous plants by endophytic diazotrophs. Critical Reviews in Plant Sciences 17: 77-119 https://doi.org/10.1016/S0735-2689(98)00357-8
  16. Jean, F. M. and Joan, M. F. 2000. Biochemical tests for identification of medical bacteria. $3^{rd}$ edition. Lippincott Willians and Wilkins. pp. 3-451
  17. Kalbe, C., Marten, P. and Berg, G. 1996. Strains of genus Serratia as beneficial rhizobacteria of oilseed rape with antifungal properties. Microbiol. Res. 151: 433-439 https://doi.org/10.1016/S0944-5013(96)80014-0
  18. Lelliotte, R. A., Billing, E. and Hayward, A C. 1966. A determinative scheme for the fluorescent plant pathogenic Pseudomonas sp.. J. Appl. Bacteriol. 29: 470-489 https://doi.org/10.1111/j.1365-2672.1966.tb03499.x
  19. Liu, L., Kloepper, J. Wand Tuzun, S. 1995. Induction of systemic resistance in cucumber against Fusarium wilt by plant growth promoting rhizobacteria. Phytopathology 85: 695-698 https://doi.org/10.1094/Phyto-85-695
  20. Marchesi, J. R., Sato, T., Weightman, A J., Martin, T. A, Fry, J. C., Hiom, S. J. and Wade, W. G. 1998. Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA Appl. Environ. Microbiol. 64: 795-799
  21. McInroy, J. A and Kloepper, J. W. 1995. Survey of indigenous bacterial endophytes from cotton and sweet com. Plant and Soil 173: 337-349 https://doi.org/10.1007/BF00011472
  22. Misaghi, I. J. and Donndelinger, C. R. 1990. Endophytic bacteria in symptom-free cotton plants. Phytopathology 80: 808-811 https://doi.org/10.1094/Phyto-80-808
  23. Misaghi, I. and Grogan, G. H. 1969. Nutritional and biochemical comparison of plant pathogenic and saprophytic fluorescent Pseudomonas sp.. Phytopathology 59: 1436-1450
  24. Monreal, J. and Reese, E. T. 1969. The chitinase of Serratia marcescens. Can. l. Microbiol. 15: 689-696 https://doi.org/10.1139/m69-122
  25. Mundt, J. O. and Hinkle, N. F. 1976. Bacteria within ovules and seeds. Appl. Environ. Microbiol. 32: 694-698
  26. Okamoto, H., Sato, M., Sato, Z. and Isaka, M. 1998. Biocontrol of Phytopthora capsici by Serratia marcescens F-1-1 and analysis of biocontrol mechanism using transposon-insertion mutants. Ann. Phytopathol. Soc. Jpn. 64: 287-293 https://doi.org/10.3186/jjphytopath.64.287
  27. Reinhold-Hurek, B. and Hutek, T 1998. Interactions of gramineous plants with Azoacus spp. and other diazotrophs: identification, localization and perspectives to study their function. Critical Reviews in Plant Sciences 17: 29-54 https://doi.org/10.1016/S0735-2689(98)00355-4
  28. Sambrook, J., Fritsch, E. F. and Maniatis, T 2001. Molecular cloning: a laboratory manual, $3^{rd}$ edition. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  29. Samish, Z., Etinger-Tulczynska, R. and Bick, M. 1961. Microflora within healthy tomatoes. Appl. Microbiol. 9: 20-25
  30. Schwyn, B. and Neilands, J. B. 1987. Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry 160: 47-56 https://doi.org/10.1016/0003-2697(87)90612-9
  31. Someya, N. and Kataoka, N. 2000. Biological control of cyclamen soilborne diseases by Serratia marcescens strain B2. Plant Dis. 84: 334-340 https://doi.org/10.1094/PDIS.2000.84.3.334
  32. Sturz, A V.. Christie, B. R. and Matheson, B. G. 1998. Associations of bacterial endophyte populations from red clover and potato crops with potential for beneficial allelopathy. Can. J. Microbiol. 44: 162-167 https://doi.org/10.1139/cjm-44-2-162
  33. Wei, G., Joseph, W and Tuzun, S. 1991. Induction of systemic resistance of cucumber to Colletotrichum orbuculare by select strains of plant growth-promoting hizobacteria. Phytopathology 81: 1508-1512 https://doi.org/10.1094/Phyto-81-1508