• Title/Summary/Keyword: Biochip and Biosensor

Search Result 14, Processing Time 0.026 seconds

Planar Hall Sensor Used for Microbead Detection and Biochip Application

  • Thanh, N.T.;Kim, D.Y.;Kim, C.G.
    • Journal of Magnetics
    • /
    • v.12 no.1
    • /
    • pp.40-44
    • /
    • 2007
  • The Planar Hall effect in a spin valve structure has been applied as a biosensor being capable of detecting $Dynabeads^{(R)}$ M-280. The sensor performance was tested under the application of a DC magnetic field where the output signals were obtained from a nanovoltmeter. The sensor with the pattern size of $50{\times}100{\mu}m^2$ has produced high sensitivity; especially, the real-time profiles by using that sensor revealed significant performance at external applied magnetic field of around 7.0 Oe with the resolution of 0.04 beads per $\mu m^2$. Finally, a successful array including 24 patterns with the single sensor size of $3{\times}3{\mu}m^2$ has shown the uniform and stable signals for single magnetic bead detection. The comparison of this sensor signal with the others has proved feasibility for biosensor application. This, connecting with the advantages of more stable and high signal to noise of PHR sensor's behaviors, can be used to detect the biomolecules and provide a vehicle for detection and study of other molecular interaction.

Technology Level Evaluation Based On Technology Growth Model and Its Implication - In Case of 'Biochip and Biosensor Technology' (기술성장모형에 기반을 둔 기술수준평가 결과 및 시사점 - 바이오칩.센서기술을 중심으로)

  • Han, Min-Kyu;Kim, Byoung-Soo;Ryu, Ji-Yeon;Byeon, Soon-Cheon
    • Journal of Korea Technology Innovation Society
    • /
    • v.13 no.2
    • /
    • pp.252-281
    • /
    • 2010
  • In this paper, we analyze the result of the Technology Level Evaluation of 'Biochip and biosensor (BB) Technology' consisted of 3 sub-categorized technologies; biochip sensing (BS), lab on a chip and high-efficient customized health care technology. As an analysis tool, authors used a delphi (a repeated survey) and dynamic methodology with technology growth model to overcome limits of previous evaluations. As a result, levels of BB were evaluated 51.5% (Korea) and 75.1% (US), and the technology gap between two countries was 6.1 yrs. In 2013, these levels were expected to change to 60.1% (Korea), 78.4% (US) and 4.3 yrs, respectively. In comparison with other biotechnology, the gap of BB was smaller and expected to catch up with US faster. In the case of sub-categorized technologies, they showed the smallest gap and would have faster catch-up speed than other sub-categorized technologies in the Biotechnology field. Based on the result of the survey, relative superiority of BB in Korea was originated from competent researchers and research fund, but weak basic science would be weak points. We think that BB's characteristic as an emerging technology and concentrated research activities on BB are additional strong points. This research proposes the supporting and supplemented points to promote the BB in Korea.

  • PDF

Research Trend of Biochip Sensors for Biomarkers Specific to Diagnostics of Lung Cancer Diseases (폐암 질환 진단에 활용 가능한 바이오마커 검출용 바이오칩 센서 연구 동향)

  • Lee, Sang Hyuk;Goh, Eunseo;Lee, Hye Jin
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.645-651
    • /
    • 2018
  • Lung cancer has the highest death rate of any cancer diseases in Koreans. However, patients often feel difficult to recognize their disease before facing the terminal diagnosis due to the absence of any significant symptoms. Furthermore, the clear detection of an early cancer stage is usually obscure with existing diagnostic methods. For this reason, extensive research efforts have been made on introducing a wide range of biochemical diagnostic tools for the molecular level analysis of biological fluids for lung cancer diagnoses. A chip-based biosensor, one type of the analytical devices, can be a great potential for the diagnosis, which can be used without any further expensive analytical equipments nor skilled analysts. In this mini review, we highlight recent research trends on searching biomarker candidates and bio-chip sensors for lung cancer diagnosis in addition to discussing their future aspects.

Development of Three-dimensional Chamber-type Glucose Sensor Using Micromachining Technology (마이크로머시닝 기술을 이용한 3차원 마이크로 챔버형 글루코스 센서의 개발)

  • Kim Sung Ho;Kim Chang Kyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.1
    • /
    • pp.24-28
    • /
    • 2005
  • A micromachined biochip with a three dimensional silicon chamber was developed for the construction of biosensors. Anisotropic etching was used fur the formation of the chamber on the p-type silicon wafer(100) and then was glued to the Pyrex glass bottom-substrate with pre-deposited platinum electrode. The electrochemical characterization of its Pt electrode and Ag/AgCl reference electrode was investigated.

  • PDF

Development of New Biochip using Magnetic Interaction and Random Fluidic Self-assembly (자기력과 Random Fluidic Self-assembly에 의한 신규 바이오칩의 개발)

  • Choi, Yong-Sung;Kwon, Young-Soo;Park, Dae-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.6
    • /
    • pp.615-621
    • /
    • 2004
  • This paper describes a new constructing method of multifunctional biosensor using many kinds of biomaterials. A metal particle and an array was fabricated by photolithographic. Biomaterials were immobilized on the metal particle. The array and the particles were mixed in a buffer solution, and were arranged by magnetic force interaction and random fluidic self-assembly. A quarter of total Ni dots were covered by the particles. The binding direction of the particles was controllable, and condition of particles was almost with Au surface on top. The particles were successfully arranged on the array. The biomaterial activities were detected by chemiluminescence and electrochemical methods.

Development of New Biochip Using Magnetic Force (자기력에 의한 신규 바이오칩의 개발)

  • Choi, Yong-Sung;Moon, Jong-Dae;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.105-108
    • /
    • 2006
  • This paper describes a new constructing method of multifunctional biosensor using many kinds of biomaterials. A metal particle and an array was fabricated by photolithographic. Biomaterials were immobilized on the metal particle. The array and the particles were mixed in a buffer solution, and were arranged by magnetic force interaction and random fluidic self-assembly. A quarter of total Ni dots were covered by the particles. The binding direction of the particles was controllable, and condition of particles was almost with Au surface on top. The particles were successfully arranged on the array. The biomaterial activities were detected by chemiluminescence and electrochemical methods.

  • PDF

Development of Biochip by Magnetic Force Interaction (자기력에 의한 바이오칩의 개발)

  • Choi, Yong-Sung;Park, Dae-Hee;Kwon, Young-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.196-199
    • /
    • 2003
  • In this paper, we have been described a new constructing method of multichannel biosensor using self-assembly by magnetic force interaction. A metal particle and an array was fabricated by photolithographic. Biomaterials were immobilized on the metal particle. The array and the particles were mixed in a buffer solution, and were arranged by magnetic force interaction and self-assembly. A quarter of total Ni dots were covered by the particles. The binding direction of the particles was controllable, and condition of particles was almost with Au surface on top. The particles were successfully arranged on the array. The biomaterial activities were detected by chemiluminescence.

  • PDF

Bio-Electronics

  • Choe, Jeong-U
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.123-126
    • /
    • 2000
  • Bio-electronics has been considered as one of the most appropriate candidates to overcome the frequently encountered problems in the development of future electronic devices. It has some advantages such as ultra fast electron transfer rate and high-energy efficiency compared with the silicon-based electronic devices. In silicon-based electronics, there are some of limitations of manufacturing process and physical problems. Bio-electronics can overcome the limitation and problem of silicon-based electronics. Bio-electronics has possible application areas as biosensor, biochip, bio-transistor and bio-computer. In the future, bio-electronics can substitute the silicon-based electronics.

  • PDF

Application of an Interferometric Biosensor Chip to Biomonitoring an Endocrine Disruptor

  • Kim, Byung-Woo;Lim, Sung-Hyuk
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.2
    • /
    • pp.118-126
    • /
    • 2004
  • Recombinant E.coli ACV 1003 (recA::lacZ) releasing ${\beta}$-galactosidase by a SOS regulon system, when exposed to DNA-damaging compounds, have been used to effectively monitor endocrine disruptors. Low enzyme activity of less than 10 units/mL, corresponding to a $\mu\textrm{g}$/L(ppb) range of an endocrine disruptor (tributyl tin, bisphenol A. etc.), can be rapidly determined, not by a conventional time-consuming and tedious enzyme assay, but by an alternative interferometric biosensor. Heavily boron-doped porous silicon for application as an interferometer, was fabricated by etching to form a Fabry-Perot fringe pattern, which caused a change in the refractive index of the medium including ${\beta}$-galactosidase. In order to enhance the immobilization of the porous silicon surface, a calyx crown derivative (ProLinker A) was applied, instead of a conventional biomolecular affinity method using biotin. This resulted in a denser linked formation. The change in the effective optical thickness versus ${\beta}$-galactosidase activity, showed a linear increase up to a concentration of 150 unit ${\beta}$-galactosidase/mL, unlike the sigmoidal increase pattern observed with the biotin.

Development of 3-Dimensional Biochip Using Magnetic Interaction and Self-Assembly (자기력과 self-assembly에 의한 3차원 바이오칩의 개발)

  • Choi, Yong-Sung;Park, Dae-Hee;Kwon, Young-Soo;Tamiya, E.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1909-1911
    • /
    • 2003
  • This research describes a new constructing method of multifunctional biosensor using many kinds of biomaterials. A metal particle and an array was fabricated by photolithographic. Biomaterials were immobilized on the metal particle. The array and the particles were mixed in a buffer solution, and were arranged by magnetic force interaction and self-assembly. A quarter of total Ni dots were covered by the particles. The binding direction of the particles was controllable, and condition of particles was almost with Au surface on top. The particles were successfully arranged on the array. The biomaterial activities were detected by chemiluminescence and electrochemical methods.

  • PDF