• Title/Summary/Keyword: Bioactive agents

Search Result 160, Processing Time 0.03 seconds

Inhibitory Effects of Seaweed Extracts on Growth of Malassezia furfur and Malassezia restricta

  • Choi, Jae-Suk;Lee, Bo-Bae;Joo, Chi-Un;Shin, Su-Hwa;Ha, Yu-Mi;Bae, Hee-Jung;Choi, In-Soon
    • Fisheries and Aquatic Sciences
    • /
    • v.12 no.1
    • /
    • pp.29-34
    • /
    • 2009
  • Fifty seven species of common seaweed from the coast of Korea were screened for antifungal activity against Malassezia species. Seaweeds as a source of bioactive compounds are able to produce a great variety of secondary metabolites with different activities. There are numerous reports on the biological activities of seaweeds against human pathogens, fungi, and yeasts, but only few contain data regarding inhibitory effects against Malassezia sp., a major cause of dandruff and seborrheic dermatitis. To help address this paucity of information, this work was carried out to examine the antifungal effects of seaweed extracts against M. furfur and M. restricta. Of the fifty seven species of marine algae screened for their potential antifungal activity, only 17 species (29.8%) exhibited inhibitory activity. In agar disc diffusion method, the ether extracts of Corallina pilulifera, Enteromorpha linza, Laminaria japonica, Symphyocladia latiuscula and Ulva sp. showed strong antifungal activity. To identify major constituents in seaweed extracts, four selected extracts were analyzed on' a GC-MS equipped with a flame ionization detector, and compared to spectral data from databases WILEY229.LIB and NIST107.LIB. Most constituents in seaweed extracts are fatty acid-related compounds. When we evaluated any acute toxicity, the ether extracts of the selected four species were not toxic in mice. According to these results, it can be suggested that these seaweed extracts are valuable for the development of therapeutic agents in treating dandruff and seborrheic dermatitis. Further investigations to determine its bioactive compound(s) are currently in progress.

A bioassay system for pharmacological standardization of Withania somnifera derived herbal remedies

  • Dey, Amitabha;Chatterjee, Shyam Sunder;Kumar, Vikas
    • CELLMED
    • /
    • v.9 no.1
    • /
    • pp.1.1-1.13
    • /
    • 2019
  • Background: Contents of bioactive substances extractable from different parts of terrestrial plants vary enormously. Aim: To ascertain that parts of Withania somnifera other than its roots can also be used for prevention and cure of unavoidable stress triggered central hypersensitivity to pain. Material and Methods: Groups of male or female mice treated either with Withania somnifera extracts or with metformin, aspirin, imipramine, diazepam and niacin for 11 consecutive days were subjected to "foot-shock stress-induced hyperthermia" and "hot plate" tests on the 1st, 5th, 7th, and 10th days of the experiments. On the 11th day, they were subjected to tail suspension test and on 12th day pentobarbital hypnosis test. Results: Except for diazepam and imipramine, protective effects of all other tested drugs as well as of the Withania somnifera extracts against stress-induced central hypersensitivity to pain were accompanied by their preventive effects against foot-shock stress-induced body weight losses. All observed stress response suppressing effects of all test agents increased with increasing numbers of treatment days. However, mean duration of pentobarbital-induced sleep was shorter in the extracts treated groups and longer in the diazepam treated ones only. Conclusions: Reported observations reveal that pharmacological activity profile of Withania somnifera extracts in male and female mice are almost identical, and are not like those of several drugs currently often prescribed for the treatment of diabetes-associated comorbidities. Withanolides are not the only extractable bioactive constituents of Withania somnifera. The described bioassay system is well suited for pharmacological standardization of diverse types of Withania somnifera extracts.

Enzymatic Hydrolysis of Ovotransferrin and the Functional Properties of Its Hydrolysates

  • Rathnapala, Ethige Chathura Nishshanka;Ahn, Dong Uk;Abeyrathne, Edirisingha Dewage Nalaka Sandun
    • Food Science of Animal Resources
    • /
    • v.41 no.4
    • /
    • pp.608-622
    • /
    • 2021
  • Bioactive peptides have great potentials as nutraceutical and pharmaceutical agents that can improve human health. The objectives of this research were to produce functional peptides from ovotransferrin, a major egg white protein, using single enzyme treatments, and to analyze the properties of the hydrolysates produced. Lyophilized ovotransferrin was dissolved in distilled water at 20 mg/mL, treated with protease, elastase, papain, trypsin, or α-chymotrypsin at 1% (w/v) level of substrate, and incubated for 0-24 h at the optimal temperature of each enzyme (protease 55℃, papain 37℃, elastase 25℃, trypsin 37℃, α-chymotrypsin 37℃). The hydrolysates were tested for antioxidant, metal-chelating, and antimicrobial activities. Protease, papain, trypsin, and α-chymotrypsin hydrolyzed ovotransferrin relatively well after 3 h of incubation, but it took 24 h with elastase to reach a similar degree of hydrolysis. The hydrolysates obtained after 3 h of incubation with protease, papain, trypsin, α-chymotrypsin, and after 24 h with elastase were selected as the best products to analyze their functional properties. None of the hydrolysates exhibited antioxidant properties in the oil emulsion nor antimicrobial property at 20 mg/mL concentration. However, ovotransferrin with α-chymotrypsin and with elastase had higher Fe3+-chelating activities (1.06±0.88%, 1.25±0.24%) than the native ovotransferrin (0.46±0.60%). Overall, the results indicated that the single-enzyme treatments of ovotransferrin were not effective to produce peptides with antioxidant, antimicrobial, or Fe3+-chelating activity. Further research on the effects of enzyme combinations may be needed.

Antiviral Potential of the Genus Panax: An updated review on their effects and underlying mechanism of action

  • Yibo Zhang;Xuanlei Zhong;Zhichao Xi;Yang Li;Hongxi Xu
    • Journal of Ginseng Research
    • /
    • v.47 no.2
    • /
    • pp.183-192
    • /
    • 2023
  • Viral infections are known as one of the major factors causing death. Ginseng is a medicinal plant that demonstrated a wide range of antiviral potential, and saponins are the major bioactive ingredients in the genus Panax with vast therapeutic potential. Studies focusing on the antiviral activity of the genus Panax plant-derived agents (extracts and saponins) and their mechanisms were identified and summarized, including contributions mainly from January 2016 until January 2022. P. ginseng, P. notoginseng, and P. quinquefolius were included in the review as valuable medicinal herbs against infections with 14 types of viruses. Reports from 9 extracts and 12 bioactive saponins were included, with 6 types of protopanaxadiol (PPD) ginsenosides and 6 types of protopanaxatriol (PPT) ginsenosides. The mechanisms mainly involved the inhibition of viral attachment and replication, the modulation of immune response by regulating signaling pathways, including the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway, cystathionine γ-lyase (CSE)/hydrogen sulfide (H2S) pathway, phosphoinositide-dependent kinase-1 (PDK1)/ protein kinase B (Akt) signaling pathway, c-Jun N-terminal kinase (JNK)/activator protein-1 (AP-1) pathway, and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. This review includes detailed information about the mentioned antiviral effects of the genus Panax extracts and saponins in vitro and in vivo, and in human clinical trials, which provides a scientific basis for ginseng as an adjunctive therapeutic drug or nutraceutical.

Comparative Phytochemical Profiling of Methanolic Extracts of Different Parts of White Dandelion (Taraxacum coreanum) using Hybrid Ion-mobility Q-TOF MS

  • Hyemi Jang;Mira Choi;Eunmi Lee;Kyoung-Soon Jang
    • Mass Spectrometry Letters
    • /
    • v.15 no.2
    • /
    • pp.95-106
    • /
    • 2024
  • Taraxacum coreanum, known as the native Korean white dandelion, has been historically used in traditional medicine due to its various therapeutic properties. However, the specific benefits and mechanisms of white dandelion in alleviating particular symptoms or diseases remain uncertain due to the complexity of its phytochemical profile. In this study, we aimed to elucidate the phytochemical profiles of methanolic extracts of different parts of the white dandelion (flower, leaf, stem, and root) using hybrid ion-mobility Q-TOF MS. Using the trapped ion mobility-based PASEF technique, 3715 and 2114 molecular features with MS2 fragments were obtained in positive and negative ion modes, respectively, and then a total of 360 and 156 phytochemical compounds were annotated by matching with a reference spectral library in positive and negative ion modes, respectively. Subsequent feature-based molecular networking analysis revealed the phytochemical differences across the four different parts of the white dandelion. Our findings indicated that the methanolic extracts contained various bioactive compounds, including lipids, flavonoids, phenolic acids, and sesquiterpenes. In particular, lipids such as linoleic acids, lysophosphatidylcholines, and sesquiterpenoids were predominantly present in the leaf, while flavonoid glycosides and lysophosphoethanolamines were notably enriched in the flower. An assessment of the total phenolic content (TPC) and total flavonoid content (TFC) of the methanolic extracts revealed that the majority of phytochemicals were concentrated in the flower. Interestingly, despite the root extract displaying the lowest TPC and TFC values, it exhibited the highest radical scavenging rate when normalized to TPC and TFC, suggesting a potent antioxidant effect. These findings and further investigations into the biological activities and medicinal potential of the identified compounds, particularly those exclusive to specific plant parts, may contribute to the development of novel therapeutic agents derived from white dandelion.

Inhibitory Effects of Methanolic Extracts of Medicinal Plants on Nitric Oxide Production in Activated Macrophage RAW 264.7 Cells (약용식물 추출물에 의한 면역세포 산화질소 생성 억제 활성 분석)

  • Seo, Jin-Suk;Lee, Tae-Hoon;Lee, Sang-Min;Lee, Seung-Eun;Seong, Nak-Sul;Kim, Ji-Young
    • Korean Journal of Medicinal Crop Science
    • /
    • v.17 no.3
    • /
    • pp.173-178
    • /
    • 2009
  • A variety of herbs and plants have been traditionally used in oriental folk medicine for the treatment of inflammatory diseases. In our attempt to search for anti-inflammatory agents from natural products, we investigated 64 methanol extracts from 42 medicinal plants belonging to 10 families which were evaluated for inhibitory activities of NO production in lipopolysaccharide (LPS)-stimulated macrophage RAW 264.7 cells. Among them, 16 extracts exhibited inhibitory activities of NO production ($IC_{50}$ values ranging from 59.6 to 94.7 ${\mu}g/m{\ell}$). Only the extract from aerial parts of Hosta lancifolia (H. lancifolia) did not exert cytotoxic effects at the concentrations tested. The extract from H. lancifolia decreased the mRNA and protein levels of inducible nitric oxide synthase (iNOS) and pro-inflammatory cytokines in activated macrophage RAW 264.7 cells in dose-dependent manner. The results suggest that the extract may contain bioactive compounds that suppress expression of pro-inflammatory cytokines, which may prove beneficial with regard to the development of natural agents for prevention and treatment of inflammatory diseases.

Pharmacognosy for Korean Medical Food in the 21st Century

  • Kim, Dong-Myong;Cha, Eun-Chung;Chung, Ku-Jeum
    • Preventive Nutrition and Food Science
    • /
    • v.10 no.1
    • /
    • pp.95-102
    • /
    • 2005
  • The term pharmacognosy as applied to a constituent scientific discipline of Korean Medical Food (KMF) has been in use for nearly several years, and it refers to studies on the pharmacological properties of natural products foods. During the last half of the 20th century, pharmacognosy for KMF evolved from being a descriptive botanical subject to one having a more chemical and biological focus. At the beginning of the 21st century, teaching pharmacognosy for KMF teaching in academic culinary arts and natural healing institutions has been given new relevance as a result of the explosive growth in the use of herbal foods (health foods) in modern KMF practice. In turn, pharmacognosy for KMF research areas are continuing to expand, and now include aspects of cellular and molecular biology in relation to natural products, ethnobotany and phytotherapy, in addition to the more traditional analytical method development and phytochemistry. Examples are provided in this review of promising bioactive compounds obtained in two multidisciplinary natural product KMF development and discovery projects, aimed at the elucidation of new plant-derived cancer chemotherapeutic agents and novel cancer chemopreventives, respectively. The systematic study of KMF offers pharmacognosy groups an attractive new area of research, ranging from investigating the biologically active principles of KMF and their mode of action and potential active substance interactions, to sanitary and quality control, and involvement in clinical trials.

Medicinal Plants Combating Against Cancer - a Green Anticancer Approach

  • Sultana, Sabira;Asif, Hafiz Muhammad;Nazar, Hafiz Muhammad Irfan;Akhtar, Naveed;Rehman, Jalil Ur.;Rehman, Riaz Ur.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.11
    • /
    • pp.4385-4394
    • /
    • 2014
  • Cancer is the most deadly disease that causes the serious health problems, physical disabilities, mortalities, and morbidities around the world. It is the second leading cause of death all over the world. Although great advancement have been made in the treatment of cancer progression, still significant deficiencies and room for improvement remain. Chemotherapy produced a number of undesired and toxic side effects. Natural therapies, such as the use of plant-derived products in the treatment of cancer, may reduce adverse and toxic side effects. However, many plants exist that have shown very promising anticancer activities in vitro and in vivo but their active anticancer principle have yet to be evaluated. Combined efforts of botanist, pharmacologist and chemists are required to find new lead anticancer constituent to fight disease. This review will help researchers in the finding of new bioactive molecules as it will focus on various plants evaluated for anticancer properties in vitro and in vivo.

Antiviral Effects of Sulfated Exopolysaccharide from the Marine Microalge Gyrodinium impudicum strain KG03

  • Im, Jeong-Han;Kim, Seong-Jin;Park, Gyu-Jin;An, Se-Hun;Lee, Hyeon-Sang;Lee, Hong-Geum
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.615-620
    • /
    • 2003
  • The sulfated exopolysaccharide p-KG03, which is produced by the marine microalga Gyrodinium impudicum strain KG03, exhibited impressive antiviral activity in vitro ($EC_{50}$ = 26.9 g/ml) against the encephalomyocarditis virus (EMCV). Depending on the p-KG03 concentration, the development of cytopathic effects in EMCV-infected HeLa cells was either inhibited completely or slowed. Moreover, p-KG03 did not show any cytotoxic effects on HeLa cells, even at concentrations up to 1,000 g/ml. The polysaccharide was purified by repeated precipitation in ethanol, followed by gel filtration. The p-KG03 polysaccharide had a molecular weight of $1.87\;{\times}\;10^6$, and was characterized as a homopolysaccharide of galactose with uronic acid (2.96%, w/w) and sulfate groups (10.32% w/w). The biological activities of p-KG03 suggest that sulfated metabolites from marine organisms are a rich source of antiviral agents. This is the first reported marine source of antiviral sulfated polysaccharides against EMCV. The p-KG03 polysaccharide may be useful for the development of marine bioactive exopolysaccharides for use in biotechnological and pharmaceutical products.

  • PDF

Cytotoxicity Effects of Fraction and Chloroform Extracts from Corn is fructus on Cancer Cell Lines (산수유 클로로포름 추출물과 분획물의 암세포주에 대한 세포독성)

  • Yang Hyun Ok;Choi Won Hyung;Kim Young Hyun;Baek Seung Hwa;Chun Hyun Ja
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.5
    • /
    • pp.1343-1346
    • /
    • 2004
  • Cornis fructus were extracted by successive extractions and then fractionated with chloroform extract to get active fractions. This study was performed to determine the cytotoxic effect of chloroform extract from Corn is fructus on NIH 3T3 fibroblasts and cancer cell lines using MTT assay. All extracts did not exhibit cytotoxicity in NIH 3T3 fibroblasts. Chloroform extract exhibited antitumor activity in A549, MDA-MB-123, B16 melanoma and SNU-C4 cells. Futher fractionation with chloroform extract was performed to obtain effective fractions. 3 fraction showed the strongest cytotoxic effect against A549, MDA-MB-123, B16 melanoma and SNU-C4 cells. These results suggest that 3 fraction of the chloroform extract from Cornis fructus possessed bioactive material of antitumorous agents.