• Title/Summary/Keyword: BioH

Search Result 2,930, Processing Time 0.033 seconds

Effect of Ursolic Acid on the Development of Mouse Embryonic Stem Cells under Hypoxia (저산소 상태에서 우르솔산이 배아줄기세포 성장에 미치는 효과)

  • Han, Gi Yeon;Park, Jae Hong;Oh, Keon Bong;Lee, Sei-Jung
    • Journal of Life Science
    • /
    • v.23 no.10
    • /
    • pp.1223-1229
    • /
    • 2013
  • Ursolic acid (UA) a bio-active ingredient found in a variety of fruits and vegetables, and it has potent antioxidant activity. However, the role of UA in mouse embryonic stem (ES) cells is poorly understood. This study investigated the functional role of UA in regulating the development of mouse ES cells under hypoxia. Hypoxia did not exert a significant effect on the undifferentiated state of mouse ES cells. However, it induced reactive oxygen species (ROS) generation and increased the level of lactate dehydrogenase (LDH) production at 48 h of hypoxic exposure. Conversely, oxidative stress induced by hypoxia was significantly inhibited by UA ($30{\mu}M$) pretreatment. Hypoxia significantly decreased cell survival and the level of [$^3H$] thymidine incorporation, both of which recovered following pretreatment of UA. In addition, UA decreased the apoptotic effect of hypoxia by attenuating caspase-3 cleavage or by recovering cellular inhibition of the apoptotic protein (cIAP)-2 and Bcl-2 expression. We further found that UA decreased senescence-associated beta-galactosidase activity. We suggest that UA is a natural antioxidant and one of the functional modulators of hypoxia-induced survival, apoptosis, proliferation, and aging in mouse ES cells.

Induction of Mitotic Arrest and Apoptosis by Diallyl Trisulfide in U937 Human Leukemia Cells (U937 인체혈구암세포에서 diallyl trisulfide에 의한 mitotic arrest와 apoptosis 유발)

  • Park, Hyun Soo;Lee, Jun Hyuk;Son, Byoung Yil;Choi, Byung Tae;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.23 no.5
    • /
    • pp.622-628
    • /
    • 2013
  • Diallyl trisulfide (DATS), one of the major organosulfur components of garlic (Allium sativum), has various biological effects such as anti-microbial and anti-cancer activities. However, the molecular mechanisms of growth inhibition related to cell cycle arrest are poorly understood. In this study, we investigated the effects of DATS on cell cycle progression in U937 human leukemia cells. Treatment with DATS in U937 cells resulted in inhibition of cell viability through G2/M arrest and apoptosis. DATS-induced G2/M arrest was associated with up-regulation of cyclin B1 and cyclin-dependent kinase 1 (CDK1). DATS also significantly increased levels of phospho-histone H3, which is a mitosis-specific marker, indicating that DATS induced mitotic arrest but not G2 arrest in U937 cells. DATS treatment also generated the reactive oxygen species (ROS) in U937 cells; however, pretreatment with N-acetyl-l-cysteine (NAC), a ROS scavenger, significantly attenuated DATS-induced mitotic arrest and apoptosis. Taken together, our data indicate that DATS exhibits anti-cancer effects through mitotic arrest and apoptosis in a ROS-dependent manner.

A Study on the Performance of Companding Algorithms for Digital Hearing Aid Users (디지털 보청기 사용자를 위한 압신 알고리즘의 성능 연구)

  • Hwang, Y.S.;Han, J.H.;Ji, Y.S.;Hong, S.H.;Lee, S.M.;Kim, D.W.;Kim, In-Young;Kim, Sun-I.
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.3
    • /
    • pp.218-229
    • /
    • 2011
  • Companding algorithms have been used to enhance speech recognition in noise for cochlea implant users. The efficiency of using companding for digital hearing aid users is not yet validated. The purpose of this study is to evaluate the performance of the companding for digital hearing aid users in the various hearing loss cases. Using HeLPS, a hearing loss simulator, two different sensorinerual hearing loss conditions were simulated; mild gently sloping hearing loss(HL1) and moderate to steeply sloping hearing loss(HL2). In addition, a non-linear compression was simulated to compensate for hearing loss using national acoustic laboratories-non-linear version 1(NAL-NL1) in HeLPS. In companding, the following four different companding strategies were used changing Q values(q1, q2) of pre-filter(F filter) and post filter(G filter). Firstly, five IEEE sentences which were presented with speech-shaped noise at different SNRs(0, 5, 10, 15 dB) were processed by the companding. Secondly, the processed signals were applied to HeLPS. For comparison, signals which were not processed by companding were also applied to HeLPS. For the processed signals, log-likelihood ratio(LLR) and cepstral distance(CEP) were measured for evaluation of speech quality. Also, fourteen normal hearing listeners performed speech reception threshold(SRT) test for evaluation of speech intelligibility. As a result of this study, the processed signals with the companding and NAL-NL1 have performed better than that with only NAL-NL1 in the sensorineural hearing loss conditions. Moreover, the higher ratio of Q values showed better scores in LLR and CEP. In the SRT test, the processed signals with companding(SRT = -13.33 dB SPL) showed significantly better speech perception in noise than those processed using only NAL-NL1(SRT = -11.56 dB SPL).

Bioactivity-guided isolation of ginsenosides from Korean Red Ginseng with cytotoxic activity against human lung adenocarcinoma cells

  • Yu, Jae Sik;Roh, Hyun-Soo;Baek, Kwan-Hyuck;Lee, Seul;Kim, Sil;So, Hae Min;Moon, Eunjung;Pang, Changhyun;Jang, Tae Su;Kim, Ki Hyun
    • Journal of Ginseng Research
    • /
    • v.42 no.4
    • /
    • pp.562-570
    • /
    • 2018
  • Background: Lung cancer is the leading cause of cancer-related death worldwide. In this study, we used a bioactivity-guided isolation technique to identify constituents of Korean Red Ginseng (KRG) with antiproliferative activity against human lung adenocarcinoma cells. Methods: Bioactivity-guided fractionation and preparative/semipreparative HPLC purification were used with LC/MS analysis to separate the bioactive constituents. Cell viability and apoptosis in human lung cancer cell lines (A549, H1264, H1299, and Calu-6) after treatment with KRG extract fractions and constituents thereof were assessed using the water-soluble tetrazolium salt (WST-1) assay and terminal deoxyribonucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining, respectively. Caspase activation was assessed by detecting its surrogate marker, cleaved poly adenosine diphosphate (ADP-ribose) polymerase, using an immunoblot assay. The expression and subcellular localization of apoptosis-inducing factor were assessed using immunoblotting and immunofluorescence, respectively. Results and conclusion: Bioactivity-guided fractionation of the KRG extract revealed that its ethyl acetate-soluble fraction exerts significant cytotoxic activity against all human lung cancer cell lines tested by inducing apoptosis. Chemical investigation of the ethyl acetatesoluble fraction led to the isolation of six ginsenosides, including ginsenoside Rb1 (1), ginsenoside Rb2 (2), ginsenoside Rc (3), ginsenoside Rd (4), ginsenoside Rg1 (5), and ginsenoside Rg3 (6). Among the isolated ginsenosides, ginsenoside Rg3 exhibited the most cytotoxic activity against all human lung cancer cell lines examined, with $IC_{50}$ values ranging from $161.1{\mu}M$ to $264.6{\mu}M$. The cytotoxicity of ginsenoside Rg3 was found to be mediated by induction of apoptosis in a caspase-independent manner. These findings provide experimental evidence for a novel biological activity of ginsenoside Rg3 against human lung cancer cells.

Implementation of Gait Analysis System Based on Inertial Sensors (관성센서 기반 보행 분석 시스템 구현)

  • Cho, J.S.;Kang, S.I.;Lee, K.H.;Jang, S.H.;Kim, I.Y.;Lee, J.S.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.9 no.2
    • /
    • pp.137-144
    • /
    • 2015
  • In this paper, we present an inertial sensor-based gait analysis system to measure and analyze lower-limb movements. We developed an integral AHRS(Attitude Heading Reference System) using a combination of rate gyroscope, accelerometer and magnetometer sensor signals. Several AHRS modules mounted on segments of the patient's body provide the quaternions representing the patient segments's orientation in space. And a method is also proposed for calculating three-dimensional inter-segment joint angle which is an important bio-mechanical measure for a variety of applications related to rehabilitation. To evaluate the performance of our AHRS module, the Vicon motion capture system, which offers millimeter resolution of 3D spatial displacements and orientations, is used as a reference. The evaluation resulted in a RMSE(Root Mean Square Error) of 1.08 and 1.72 degree in yaw and pitch angle. In order to evaluate the performance of our the gait analysis system, we compared the joint angle for the hip, knee and ankle with those provided by Vicon system. The result shows that our system will provide an in-depth insight into the effectiveness, appropriate level of care, and feedback of the rehabilitation process by performing real-time limb or gait analysis during the post-stroke recovery.

  • PDF

Antimelanogenesis and skin-protective activities of Panax ginseng calyx ethanol extract

  • Lee, Jeong-Oog;Kim, Eunji;Kim, Ji Hye;Hong, Yo Han;Kim, Han Gyung;Jeong, Deok;Kim, Juewon;Kim, Su Hwan;Park, Chanwoong;Seo, Dae Bang;Son, Young-Jin;Han, Sang Yun;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • v.42 no.3
    • /
    • pp.389-399
    • /
    • 2018
  • Background: The antioxidant effects of Panax ginseng have been reported in several articles; however, little is known about the antimelanogenesis effect, skin-protective effect, and cellular mechanism of Panax ginseng, especially of P. ginseng calyx. To understand how an ethanol extract of P. ginseng berry calyx (Pg-C-EE) exerts skin-protective effects, we studied its activities in activated melanocytes and reactive oxygen species (ROS)-induced keratinocytes. Methods: To confirm the antimelanogenesis effect of Pg-C-EE, we analyzed melanin synthesis and secretion and messenger RNA and protein expression levels of related genes. Ultraviolet B (UVB) and hydrogen peroxide ($H_2O_2$) were used to induce cell damage by ROS generation. To examine whether this damage is inhibited by Pg-C-EE, we performed cell viability assays and gene expression and transcriptional activation analyses. Results: Pg-C-EE inhibited melanin synthesis and secretion by blocking activator protein 1 regulatory enzymes such as p38, extracellular signal-regulated kinases (ERKs), and cyclic adenosine mono-phosphate response element-binding protein. Pg-C-EE also suppressed ROS generation induced by $H_2O_2$ and UVB. Treatment with Pg-C-EE decreased the expression of matrix metalloproteinases, mitogen-activated protein kinases, and hyaluronidases and increased the cell survival rate. Conclusion: These results suggest that Pg-C-EE may have antimelanogenesis properties and skin-protective properties through regulation of activator protein 1 and cyclic adenosine monophosphate response element-binding protein signaling. Pg-C-EE may be used as a skin-improving agent, with moisture retention and whitening effects.

Lamellar-bio nano-hybrid; The Study for Stability of Catechin (Green Tea: EGCG) Using 3-Dimensional Liposome (라멜라-바이오 나노하이브리드: 3 Dimension-liposome을 이용한 카테킨(EGCG)에 안정화에 대한 연구)

  • Hong Geun, Ji;Jung Sik, Choi;Hee Suk, Kwon;Sung Rack, Cho;Byoung Kee, Jo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.2
    • /
    • pp.201-205
    • /
    • 2004
  • In these several years, as many people have been attracted by the functional cosmetics, there are a lot of study to enhance the stability of active ingredients for light, heat, oxygen, etc. in the academic and industrial field. Especially, catechin is well known as strong anti-oxidant, anti-inflammatory and reducing agent for oxidative stress but it is very unstable for light, heat, oxygen. etc. In this study, the stability and skin penetration of catechin are improved by 3-dimensional method. As I-dimension, porous silica is prepared using sol-gel method, and then catechin is adsorbed in pores of silica. As 2-dimension, solid lipid nanoparticles (SLN) are obtained using non-phospholipid vesicles. Finally 3-dimension is completion through lamellar phase self-organization that combines SLN catechin with skin lipid matrix. We used laser light scattering system, cyro-SEM, chromameter, HPLC and image analyzer to analyze our 3-dimentional systems. According to chromameter date, the color stability of 3-dimensional catechin is enhanced by 5-10 times compared with general liposome systems. We also confirmed through HPLC analysis that 3-dimensional catechin is more long lasting. The effect of skin penetration and wrinkle reduction are improved, too.

Effects of Heat Pretreatment on the Quality under Storage of Fresh Ginger Rhizomes (저장 전 열처리가 생강의 이화학적 및 관능적 특성에 미치는 영향)

  • Chung, Hun-Sik;Lee, Hyeon-Jeong;Seong, Jong-Hwan;Moon, Kwang-Deog
    • Food Science and Preservation
    • /
    • v.16 no.5
    • /
    • pp.623-628
    • /
    • 2009
  • Fresh ginger rhizomes were heat-treated for 10 min, 30 min, or 60 min using hot air ($40^{\circ}C$, $50^{\circ}C$, or $60^{\circ}C$), and stored in low-density polyethylene (0.04 mm thickness) bags for 2 months at $12{\pm}1^{\circ}C$. We studied the effects of heat pretreatment on changes in gas levels after packaging, and quality characteristics of the rhizomes. Oxygen and carbon dioxide levels progressively fell and rose, respectively, as the temperature of heat treatment rose and the duration of such treatment was extended. The sprouting rate of ginger rhizomes treated at $40^{\circ}C$ was higher than that of other samples. Rotting, softening, and increasing pH of rhizomes were accelerated by treatment at higher temperature for a longer time. Weight loss and soluble solid levels were not affected by heat treatment. Sensory qualities such as appearance, odor, and overall acceptability of rhizomes fell with treatment at a higher temperature for a longer time. These results suggest that heat pretreatment has a detrimental effect on the quality of fresh ginger rhizomes.

Major Compound Analysis and Assessment of Natural Essential Oil on Anti-Oxidative and Anti-Microbial Effects (천연 에센셜 오일의 주요 구성물질 분석과 항산화 및 항균 효과에 관한 연구)

  • Shin, Yu-Hyeon;Kim, Hyun-Jung;Lee, Jin-Young;Cho, Young-Je;An, Bong-Jeun
    • Journal of Life Science
    • /
    • v.22 no.10
    • /
    • pp.1344-1351
    • /
    • 2012
  • We studied the physical, chemical, biological, and antimicrobial effects of eight types of essential oils used in the cosmetics industry: lavender, tea tree, rosemary, juniper berry, Chamaecyparis obtusa, cypress, cedar wood, and pine. Lavender oil had a linalyl acetate (an ester chemical compound) content of 48% and radical scavenging activity of 22.36% at 5,000 ppm. Tea tree oil had radical scavenging activity of 43.94% at 5,000 ppm and antimicrobial activity against S. aureus, S. epidermidis, S. mutans, and C. albicans in each 6, 3.5, 6.5, and 5 mm, respectively. Chamaecyparis obtusa oil had the highest acidity (pH 2.64) compared with the other oils, and sesquiterpene compounds were found to have 19.20%. Cedar wood oil had the highest specific gravity and refractive index compared to the other oils and had a sesquiterpene content of 99.73%. The radical scavenging activity of cedar wood essential oil exceeded 39.68% at 5,000 ppm. The clear zone, indicating antimicrobial activity against P. acnes, P. ovale, and C. albicans, was 3.5, 6, and 6 mm, respectively, at a concentration of 1% cedar wood oil. Results showed that with a high sesquiterpene content, the antioxidant effect was generally, but not always, high, suggesting that this is determined according to composition of the compound rather than presence of each antioxidant. The results indicate that antimicrobial activity is determined by the existence of each antimicrobial ingredient rather than terpene composition.

Characterization of Sporulation-Specific Glucoamylase of Saccharomyces diastaticus (Saccharomyces diastaticus의 포자형성 특이 글루코아밀라제의 특성)

  • Kim, Eun-Ju;Ahn, Jong-Seog;Kang, Dae-Ook
    • Journal of Life Science
    • /
    • v.20 no.5
    • /
    • pp.683-690
    • /
    • 2010
  • The yeast strains of Saccharomyces diastaticus produce one of three isozymes of an extracellular glucoamylase I, II or III, a type of exo-enzyme which can hydrolyse starch to generate glucose molecules from non-reducing ends. These enzymes are encoded by the STA1, STA2 and STA3 genes. Another gene, sporulation-specific glucoamylase (SGA), also exists in the genus Saccharomyces which is very homologous to the STA genes. The SGA has been known to be produced in the cytosol during sporulation. However, we hypothesized that the SGA is capable of being secreted to the extracellular region because of about 20 hydrophobic amino acid residues at the N-terminus which can function as a signal peptide. We expressed the cloned SGA gene in S. diastaticus YIY345. In order to compare the biochemical properties of the extracellular glucoamylase and the SGA, the SGA was purified from the culture supernatant through ammonium sulfate precipitation, DEAE-Sephadex A-50, CM-Sephadex C-50 and Sephadex G-200 chromatography. The molecular weight of the intact SGA was estimated to be about 130 kDa by gel filtration chromatography with high performance liquid chromatography (HPLC) column. Sodium dedecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis showed it was composed of two heterogeneous subunits, 63 kDa and 68 kDa. The deglycosylation of the SGA generated a new 59 kDa band on the SDS-PAGE analysis, indicating that two subunits are glycosylated but the extent of glycosylation is different between them. The optimum pH and temperature of the SGA were 5.5 and $45^{\circ}C$, respectively, whereas those for the extracellular glucoamylase were 5.0 and $50^{\circ}C$. The SGA were more sensitive to heat and SDS than the extracellular glucoamylase.