• Title/Summary/Keyword: Bio-waste

Search Result 374, Processing Time 0.032 seconds

Long Term Affecting Factors on Major Water Quality Items of Landfill Leachate (매립장 침출수 주요 수질항목에 대한 장기 영향요소)

  • Chun, Seung-Kyu;Kim, Min Hyuk;Won, Jong Chul
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.1
    • /
    • pp.24-33
    • /
    • 2021
  • Analysis of long term affecting factors on water quality items of gas emission form (BOD, COD) and leachate emission form (T-N, non-bio-degradable COD (NBDCOD)) was performed for the SUDOKWON 1st Landfill Site (LS1) and 2nd Landfill Site (LS2). As landfill gas was generated, BOD and COD decreased from 6,887 and 20,025 mg/L in 1993 to 49.5 and 670.2 mg/L in 2019, respectively. TN and NBDCOD increased with waste decomposition but gradually decreased after landfill closure because of the precipitation infiltration effect. Due to the drastic decline of carbon in the leachate, the BOD/TN ratios of LS1 and LS2 declined from 13.0 and 17.0 during early stage of the landfill to 0.07 and 0.16 in 2019, respectively; LS2 and NBDCOD/COD increased from 0.25 to 0.65 during the same period. These conditions caused carbon deficiency in denitrification treatment and a chemical post-treatment request for NBDCOD. The different behaviors of gas emission and leachate emission items suggest the necessity of different strategic approaches in the long term perspective.

Influence of Anaerobically Digested Dairy Waste on Growth and Bio-Active Compounds of Spirulina subsalsa (Cyanobacteria) under Semi-Continuous Culture Conditions

  • Kuntal Sarma;Preeti Chavak;Doli;Manju Sharma;Narendra Kumar;Rama Kant
    • Microbiology and Biotechnology Letters
    • /
    • v.52 no.2
    • /
    • pp.114-121
    • /
    • 2024
  • The present communication deals with the standardization of suitable medium formulation along with anaerobically digested cow's urine (ADCU) for growth of Spirulina subsalsa. Growth was evaluated on the basis of photosynthetic and non-photosynthetic pigment. The results obtained from the study indicated that, SSM-1 and SSM-2 media are suitable for maximum synthesis of chlorophyll-α and carotenoids. The obtained results also indicated that SSM-5 medium is suitable for maximum synthesis of accessory light harvesting pigments phycobiliprotein, total carbohydrate, total protein and total lipid in S. subsalsa. From the study it could be concluded that all the five media combinations (viz. SSM-1, SSM-2, SSM-3, SSM-4 and SSM-5) would be suitable for mass cultivation of S. subsalsa. But among them, SSM-5 medium combination could be the most suitable medium.

Evaluation of Possibility of Water Plant Wastes in Composting for Agricultural Recycling (수생식물 고사체의 농업적 재활용을 위한 퇴비화 가능성 평가)

  • Choi, Ik-Won;Seo, Dong-Cheol;Kang, Se-Won;Seo, Young-Jin;Lee, Sang-Gyu;Kang, Seog-Jin;Lim, Byung-Jin;Lee, Jun-Bae;Heo, Jong-Soo;Cho, Ju-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.2
    • /
    • pp.248-252
    • /
    • 2012
  • To evaluate the possibility of water plant wastes in composting for agricultural recycling, Phragmites communis (PHRCO), Typha orientalis (TYHOR) and Zizania latifolia (ZIZLA) were used as a compost materials. In composting basin, cumulative oxygen consumptions of the compost used by water plant wastes were rapidly increased at the early stage and slightly decreased in around 15 days. Cumulative oxygen consumptions under different water plant wastes were higher in the order of TYHOR > ZIZLA > PHRCO. Temperature changes during composting process were rapidly increased at the early stage and then slowly decreased to $30{\sim}40^{\circ}C$. The maximum temperatures were higher in the order of ZIZLA ($72.2^{\circ}C$ at 11 days after starting composting) > TYHOR ($70.2^{\circ}C$ at 10 days after starting composting) > PHRCO ($66.5^{\circ}C$ at 7 days after starting composting). Oxygen consumptions at maximum temperature were higher in the order of TYHOR ($12,485mg\;O_2\;kg^{-1}$) > ZIZLA ($12,400mg\;O_2\;kg^{-1}$) > PHRCO ($9,340mg\;O_2\;kg^{-1}$). Organic matter contents, moisture contents and OM/N rates in the compost ranged 39.5~44.8%, 29.6~35.6% and 27.9~32.9, respectively. Considering that water plant waste can supply some of the nutrient requirements of crops and is a valuable fertilizer.

Fertilizer Effect of Waste Nutrient Solution in Greenhouses for Young Radish Cultivation (열무 재배를 위한 시설하우스 폐양액의 비료 효과)

  • Hong, Youngsin;Moon, Jongpil;Park, Minjung;Son, Jinkwan;Yun, Sungwook
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.460-467
    • /
    • 2022
  • The purpose of this study is to enhance utilization of the waste nutrient solution (WNS) disposed at the hydroponic greenhouse. Several sets of testing were conducted to examine the effects of WNS: (a) a fertilizer effect, (b) soil column leaching, and (c) crop cultivation. The fertilizer effect test was applied in young radish cultivation by examining the growth characteristics of young radish and soil based on inorganic nitrogen according to the soil treatment of the nitrogen fertilizer (NF) and the WNS. The fertilizer effects and crop cultivation test were conducted with five treatments (A-E): A, non-treatment (water); B, 100% of NF; C, 70% of NF + 30% of WNS; D, 50% of NF + 50% of WNS; and E, 30% of NF + 70% of WNS. The soil column leaching test was conducted with three treatments: non-treatment (water), 100% of NF, 50% of WNS + 50% of NF. As a result, the chemical properties of the WNS were pH 6.0, EC 2.4dS·m-1, total phosphorus (T-P) 28mg·L-1, ammonium nitrogen (NH4-N) 5.0mg·L-1, and nitrate nitrogen (NO3-N) 301mg·L-1. The chemical properties of the soil were pH 5.51, EC 0.31dS/m, organic matter 2.08g·kg-1, NO3-N 9.64mg·kg-1, and NH4-N 3.20mg·kg-1. The results of fertilizer effects showed that the ratio of 50% or less of NF and 50% or more of WNS was high in young radish growth. There was no statistically significant difference between the soil chemistry in the C-E treatments where WNS was mixed with NF and the B treatment where only NF was applied. As a result of the soil column leaching test, there was no significant difference in the concentrations of NO3 and NH4 in the treatment of 100% of NF and 50% of NF + 50% of WNS. The study indicates, if the mixed fertilizer of WNS and NF is applied in the soil cultivation of young radish, it will reduce the use of NF and environmental pollution. This also helps reduce production costs on farmers and increase the yield of young radish.

Performance Evaluation of Bio-Membrane Hybrid Process for Treatment of Food Waste Leachate (음식물 침출수 청정화를 위한 파일롯 규모의 생물-분리막 복합공정의 성능 평가 연구)

  • Lee, Myung-Gu;Park, Chul-Hwan;Lee, Do-Hoon;Kim, Tak-Hyun;Lee, Byung-Hwan;Lee, Jin-Won;Kim, Sang-Yong
    • KSBB Journal
    • /
    • v.23 no.1
    • /
    • pp.90-95
    • /
    • 2008
  • In this study, a combined process of sequential anaerobic-aerobic digestion (SAAD), fluidized-bed bioreactor (FBBR), and ultrafiltration (UF) for the treatment of small scale food waste leachate was developed and evaluated. The SAAD process was tested for performance and stability by subjecting leachate from food waste to a two-phase anaerobic digestion. The main process used FBBR composed of aerators for oxygen supply and fluidization, three 5 ton reaction chambers containing an aerobic mesophilic microorganism immobilized in PE (polyethylene), and a sedimentation chamber. The HRTs (hydraulic retention time) of the combined SAAD-FBBR-UF process were 30, 7, and 1 day, and the operation temperature was set to the optimal one for microbial growth. The pilot process maintained its performance even when the CODcr of input leachate fluctuated largely. During the operation, average CODcr, TKN, TP, and salt of the effluent were 1,207mg/L, 100mg/L, 50 mg/L, and 0.01 %, which corresponded to the removal efficiencies of 99.4%, 98.6%, 89.6%, and 98.5%, respectively. These results show that the developed process is able to manage high concentration leachate from food waste and remove CODcr, TKN, TP, and salt effectively.

Development of Heated-Air Dryer for Agricultural Waste Using Waste Heat of Incineration Plant (소각장 폐열을 활용한 농업폐기물 열풍 건조장치 개발)

  • Song, Dae-Bin;Lim, Ki-Hyeon;Jung, Dae-Hong
    • Journal of agriculture & life science
    • /
    • v.53 no.5
    • /
    • pp.137-143
    • /
    • 2019
  • To manufacturing of solid fuel by reuse of the wastes, the drying unit which have 500 kg/hr of drying capacity was developed and experimentally evaluate the performance. The spinach grown in Nam-hae island were used for the experiments and investigated of the heated-air drying characteristics as the inlet amount of raw materials, raw material stirring status, conveying type and drying time. The drying air heated by the energy derived from the steam which is supplied from the incineration plant. The moisture contents of raw materials were measured 85.65%. The inlet flow rate of drying air made a difference as the depth of the raw materials loaded on the drying unit and temperature has showed 108~144℃. The drying speed of the mixed drying more than doubled as that of non mixed drying under the same drying type, inlet amount, drying time and drying air temperature. In each experiment, the drying capacity have showed over 500 kg/hr. A drying efficiency of the ratio of drying consumption energy to input energy was 33.46%, lower than the average of 57.76% for the 157 conventional dryers. Because developed dryer must have a drying time of less than one hour, it is considered that the dry efficiency has been reduced due to the loss of wind volume during drying. If waste heat from incineration plant is used as a direct heat source, the dry air temperature is expected to be at least 160℃, greatly improving the drying capacity.

Anti-oxidative and Anti-cancer Activities by Cell Cycle Regulation of Salsola collina Extract (솔장다리 추출물의 항산화 활성 및 세포주기조절에 의한 항암 활성 분석)

  • Oh, You Na;Jin, Soojung;Park, Hyun-Jin;Kwon, Hyun Ju;Kim, Byung Woo
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.1
    • /
    • pp.73-81
    • /
    • 2014
  • Salsola collina, also known as Russian thistle, is widely distributed in and around waste facilities, roadsides, and drought and semi-drought areas, and is used as a traditional folk remedy in Chinese medicine for the treatment of hypertension. In this study, we have evaluated the anti-oxidative and anti-cancer activities of the ethanol extract of S. collina Pall. (EESC), and the molecular mechanisms of its anti-cancer effects on human colon carcinoma HT29 cells. EESC exhibited anti-oxidative activity through DPPH radical scavenging capacity and showed cytotoxic activity in a dose-dependent manner in HT29 cells. After EESC treatment, HT29 cells altered their morphology, becoming smaller and irregular in shape. EESC also induced cell accumulation in the G2/M phase in a dose-dependent manner, accompanied by a decrease of cell population in the G1 phase. The G2/M arrest by EESC was associated with the increased expression of cyclin-dependent kinase (CDK) inhibitor p21 and Wee1 kinase, which phosphorylates, or inactivates, Cdc2. EESC treatment induced the phosphorylation of Cdc2 and Cdc25C, and inhibited cyclin A and Cdc25C protein expression. In addition, S arrest was induced by the highest concentration of EESC treatment, associated with a decrease of cyclin A and Cdk2 expression. These findings suggest that EESC may possess remarkable anti-oxidative activity and exert an anti-cancer effect in HT29 cells by cell cycle regulation.

Analysis on Heat Transfer Coefficient of The Fluidized - Bed Combustion for Management of Sludge (슬러지 처리를 위한 유동층 연소로의 열전달률 해석)

  • Kim, Seong-Jung;Lee, Je-Hak
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.3
    • /
    • pp.27-33
    • /
    • 2012
  • According to the statistics of the Ministry of Environment, the emission of sewage sludge is increased by 7~9% yearly. In the future, it will be increased continuously because of extension of sewage disposal plants, high class treatment for removing nitrogen and phosphorus. Until now, we have depended on reclamation for lots of quantity and some part has been treated by ocean emission. But, direct reclamation of organic waste will be prohibited and even ocean emission will be prohibited now, so the treatment of sludge is put on emergency alert. Bio-gas can be produced by applying anaerobic digestion method for the recycling or refuse derived fuel can be conducted by applying carbonization method. However, the process is difficult, causes bad smell and makes it the second waste, so it cannot be practical method in fact. This study applied a fluidized bed combustor for sewage sludge treatment technologies that can actually take advantage of key technologies in order to verify its purpose is to demonstrate selected. If applying the fluidized bed combustor, it can be easily utilized as the replaced resource of energy(fuel) in the countries whose energy resources are insufficient, like our country. Especially, if applying only original strengths of the fluidized bed combustor sufficiently, the sewage sludge can be treated simply, eco-friendly, sanitarily and economically. Particularly, it is verified as the energy technology suitable for government's green growth policy.

Selection of Brevibacillus brevis B23 and Bacillus stearothermophilus B42 as Biological Control Agents against Sclerotinia Rot of Lettuce (상추 균핵병 생물적방제를 위한 Brevibacillus brevis B23과 Bacillus stearothermophilus B42의 선발)

  • Hwang, Ji-Young;Shim, Chang-Ki;Ryu, Kyung-Yeol;Choi, Du-Hoe;Jee, Hyeong-Jin
    • Research in Plant Disease
    • /
    • v.12 no.3
    • /
    • pp.254-259
    • /
    • 2006
  • Bacillus spp. isolated from mushroom medium wastes were evaluated for their biocontrol potentials on control of Sclerotinia rot of lettuce. The Bacillus isolates were more effectively obtained from waste suspension when directly added into nutrient agar(NA) medium than plating on the agar medium. Totally 42 isolates obtained from the wastes B23 and B42 showed highest antifungal activity against eight fungal pathogens such as Sclerotinia sclerotiorum, Rhizoctonia solani, Pythium ultimum, Phytophthora capsici, Fusarium oxysporum, Colletotrichum gloeosporioides, Cladosporium cucumerinum, and Botrytis cinerea and B23 and B42 were finally selected for further studies. Optimal concentration of the isolates was $10ml(10^7cfu/ml)$ to suppress the Sclerotinia rot of lettuce. Supplements such as starch, glycerol, and egg-yolk successfully maintained the bacterial population for 30 days in vitro and increased bio-control potentials against the disease. The bacterial isolate B23 alone showed 72% control value, furthermore it presented 95% control value when supplemented with 0.2% of starch, glycerol, and egg-yolk. The promising Bacillus isolates B23 and B42 were identified as Brevibacillus brevis and Bacillus stearothermophillus, respectively, based on morphological and physiological characteristics according to API database.

Adsorption Features of Lead Ion on Waste Undaria pinnatifida (폐기된 해조류를 이용한 납 이온의 흡착 특성)

  • Seo Myung-Soon;Kim Dong-Su
    • Resources Recycling
    • /
    • v.13 no.4
    • /
    • pp.23-31
    • /
    • 2004
  • Basic studies have been conducted regarding the attempt of the utilization of waste Undaria pinnatifida as an adsorbent for the adsorption treatment of lead-containing wastewater. Undaria pinnatifida was found to be chiefly composed of hyo-carbonaceous compounds and have a fairly high specific surface area, which suggesting the possibility of its application as a Potential adsorbent. The electrokinetic Potential of Undaria pinnatifida particles was observed to be negatively highest at around pH 8 and the fact that its electrokinetic potentials are negative at the whole pH range supported it might be an efficient adsorbent especially for cationic adsorbates. Under the experimental conditions, $Pb^{2+}$ was found to mostly adsorb onto Undaria pinnatifida within a few minutes and reach the equilibrium in adsorption within ca. 30 minutes. The adsorption of $Pb^{2+}$ was exothermic and explained well by e Freundlich model. Acidic pretreatment of Undaria pinnatifida enhanced its adsorption capacity for $Pb^{2+}$ , however, the reverse was observed for alkaline pretreatment. The formation of organometallic complex between $Pb^{2+}$ and some functional groups on the surface of Undaria pinnatifida was considered to be one of the main drives for adsorption. Finally the adsorbability of$ Pb^{2+}$ was examined to be rather affected by several solution features such as the coexistence of other adsorbate, the variation of ionic strength, and the concentration of complexing agent.