DOI QR코드

DOI QR Code

Fertilizer Effect of Waste Nutrient Solution in Greenhouses for Young Radish Cultivation

열무 재배를 위한 시설하우스 폐양액의 비료 효과

  • Hong, Youngsin (Division of Agricultural Engineering, National Institute of Agricultural Sciences, RDA) ;
  • Moon, Jongpil (Division of Agricultural Engineering, National Institute of Agricultural Sciences, RDA) ;
  • Park, Minjung (Division of Agricultural Engineering, National Institute of Agricultural Sciences, RDA) ;
  • Son, Jinkwan (Division of Agricultural Engineering, National Institute of Agricultural Sciences, RDA) ;
  • Yun, Sungwook (Division of Agricultural Engineering, National Institute of Agricultural Sciences, RDA)
  • 홍영신 (국립농업과학원 농업공학부) ;
  • 문종필 (국립농업과학원 농업공학부) ;
  • 박민정 (국립농업과학원 농업공학부) ;
  • 손진관 (국립농업과학원 농업공학부) ;
  • 윤성욱 (국립농업과학원 농업공학부)
  • Received : 2022.09.27
  • Accepted : 2022.10.24
  • Published : 2022.10.31

Abstract

The purpose of this study is to enhance utilization of the waste nutrient solution (WNS) disposed at the hydroponic greenhouse. Several sets of testing were conducted to examine the effects of WNS: (a) a fertilizer effect, (b) soil column leaching, and (c) crop cultivation. The fertilizer effect test was applied in young radish cultivation by examining the growth characteristics of young radish and soil based on inorganic nitrogen according to the soil treatment of the nitrogen fertilizer (NF) and the WNS. The fertilizer effects and crop cultivation test were conducted with five treatments (A-E): A, non-treatment (water); B, 100% of NF; C, 70% of NF + 30% of WNS; D, 50% of NF + 50% of WNS; and E, 30% of NF + 70% of WNS. The soil column leaching test was conducted with three treatments: non-treatment (water), 100% of NF, 50% of WNS + 50% of NF. As a result, the chemical properties of the WNS were pH 6.0, EC 2.4dS·m-1, total phosphorus (T-P) 28mg·L-1, ammonium nitrogen (NH4-N) 5.0mg·L-1, and nitrate nitrogen (NO3-N) 301mg·L-1. The chemical properties of the soil were pH 5.51, EC 0.31dS/m, organic matter 2.08g·kg-1, NO3-N 9.64mg·kg-1, and NH4-N 3.20mg·kg-1. The results of fertilizer effects showed that the ratio of 50% or less of NF and 50% or more of WNS was high in young radish growth. There was no statistically significant difference between the soil chemistry in the C-E treatments where WNS was mixed with NF and the B treatment where only NF was applied. As a result of the soil column leaching test, there was no significant difference in the concentrations of NO3 and NH4 in the treatment of 100% of NF and 50% of NF + 50% of WNS. The study indicates, if the mixed fertilizer of WNS and NF is applied in the soil cultivation of young radish, it will reduce the use of NF and environmental pollution. This also helps reduce production costs on farmers and increase the yield of young radish.

본 연구에서는 양액재배 시 발생되는 폐양액의 적절한 농업적 이용방안을 강구하기 위해 폐양액의 비료 효과시험, 토양컬럼 시험, 그리고 작물 재배시험을 수행하였다. 폐양액의 비료 효과시험은 무기질소를 기준으로 질소비료와 폐양액의 토양 처리에 따른 열무의 생육특성과 토양의 화학적 특성을 조사하였다. 폐양액 비료 효과시험과 작물 재배시험을 위한 토양에 대한 폐양액의 처리는 무처리; A, 질소비료 100%; B, 질소비료 70%+폐양액 30%; C, 질소비료 50%+폐양액 50%; D, 질소비료 30%+폐양액 70%; E 총 5개 처리구로 하였다. 토양컬럼 시험을 위한 토양에 대한 폐양액의 처리는 무처리, 질소비료 100%, 폐양액 50%+질소비료 50% 3개 처리구로 하였다. 폐양액의 화학성은 pH 6.0, EC 2.4dS·m-1, 총인(T-P) 28mg·L-1, 암모늄태 질소(NH4-N) 5.0mg·L-1, 질산태 질소(NO3-N) 301mg·L-1로 나타났다. 토양의 화학성은 pH 5.51, EC 0.31dS·m-1, 유기물 2.08g·kg-1, 질산태 질소 9.64mg·kg-1, 암모늄태 질소 3.20mg·kg-1으로 나타났다. 질소비료 50% 이하와 폐양액 50% 이상의 비율이 열무 생육에 효과가 높은 것으로 나타났다. 폐양액을 질소비료와 함께 혼합하여 적용한 C-E 처리구에서 토양의 이화학성은 질소비료만을 적용한 B 처리구와 통계적으로 유의한 차이가 없었다. 토양컬럼 시험 결과 질소비료 100%와 폐양액 50%+질산비료 50% 처리구의 NO3와 NH4의 농도는 큰차이가 없는 것으로 나타났다. 폐양액을 화학비료의 표준시비량을 기준으로 이용하여 토양에 처리하면 토양 내 질소 성분의 이동과 주변의 영향은 일반 화학비료와 유사하게 나타나는 것으로 판단된다. 열무 토경재배에 폐양액과 질소비료를 혼합하여 사용하면 폐양액의 재이용으로 환경적 부담도 줄일 수 있고, 질소비료의 사용량도 줄일 수 있어 농가에 경제적 부담 감소와 열무 생산량 증대 효과도 기대할 수 있다.

Keywords

Acknowledgement

본 연구는 농촌진흥청 연구사업(과제번호:PJ014190022021)의 지원에 의해 이루어진 것임.

References

  1. Allison L. 1965, Organic carbon. In AG Norman, ed., Methods of Soil Analysis: Part 2. Chemical and Microbiological Properties 9. American Society of Agronomy, Soil Science Society of America, Madison, WI, USA, pp 1367-1378.
  2. Bremner J.M. 1965, Total nitrogen. In AG Norman, ed., Methods of Soil Analysis: Part 2. Chemical and Microbiological Properties 9. American Society of Agronomy, Soil Science Society of America, Madison, WI, USA. pp 1149-1178.
  3. Hong K.C., B. Choi, K.J. Lim, J.H. Won, S.J. Jeon, S.O. Hur, S.K. Ha, N.W. Kim, J.E. Yang, and Y.S. Ok 2009, Effects of reclaimed wastewater and waste nutrient solution irrigation on seedling growth of Chinese cabbage. Korean J Environ Agric 28:171-178. (in Korean) doi:10.5338/KJEA.2009.28.2.171
  4. Horticulture 2020, http://www.hortitimes.com/news/articleView.html?idxno=25390. Accessed 01 July 2020.
  5. Horticulture 2021, http://www.hortitimes.com/news/articleView.html?idxno=20963. Accessed 01 July 2020.
  6. Johnson D.W., and D.W. Cole 1980, Anion mobility in soils: relevance to nutrient transport from forest ecosystems. Environ Int 3:79-90. doi:10.1016/0160-412(80)90040-9
  7. Kim D.H., Y.J. Kang, J.J. Choi, and S.I. Yun 2020, Lettuce growth and nitrogen loss in soil treated with corn starch carbamate produced using urea. Korean J Soil Sci Fertil 53:13-21. (in Korean) doi:10.7745/KJSSF.2020.53.1.103
  8. Korea Ministry of Environment (KMoE) 2020, Water Quality Conservation Act. KMoE, Sejong, Korea.
  9. Kumar R.R., and J.Y. Cho 2014, Reuse of hydroponic waste solution. Environ Sci Pollut Res Int 21:9569-9577. doi:10.1007/s11356-014-3024-3
  10. Lee E.M., S.K. Park, B.C. Lee, H.C. Lee, H.H. Kim, Y.U. Yun, S.B. Park, S.O. Chung, and J.M. Choi 2019, Changes in inorganic element concentrations in leaves, supplied and drained nutrient solution according to fruiting node during semi-forcing hydroponic cultivation of 'Bonus' tomato. Protected Hort Plant Fac 28:38-45. (in Korean) doi:10.12791/KSBEC.2019.28.1.38
  11. Lee S., and Y.C. Kim 2019, Water treatment for closed hydroponic systems. J Korean Soc Environ Eng 41:501-513. (in Korean) doi:10.4491/KSEE.2019.41.9.501
  12. Lee Y.B., and M.Y. Rho 1998, Nutriculture-techniques of recycling nutriculture of on fruit vegetables. Prot Hortic 11:29-43. (in Korean)
  13. Lee Y.J., and J.B. Chung 2006, Comparison of nitrate accumulation in lettuce grown under chemical fertilizer or compost applications. Korean J of Environ Agric 25:339-345. (in Korean) doi:10.5338/KJEA.2006.25.4.339
  14. Lim J.H., C.S. Shin, and Y.Y. Cho 2019, Environmental impact analysis of strawberry hydroponic culture for proper nutrient water supply. J Inf Technol Appl Eng 9:41-47. (in Korean) doi:10.227333/JITAE.2019.09.02.005
  15. Ministry of Agricultural, Food and Rural Affairs (MAFRA) 2019, Greenhouse status and vegetable production of facilities in 2019. MAFRA, Sejong, Korea. (in Korean)
  16. NAAS (National Institute of Agricultural Sciences) 2010, Fertilizer recommendation standard for various crop. NAAS, RDA, Jeonju, Korea. (in Korean)
  17. Park C.J., J.E. Yang, K.H. Kim, K.Y. Yoo, and Y.S. Ok 2005, Recycling of hydroponic waste solution for red pepper (Capsicum annum L.) growth. Korean J Environ Agric 24:24-28. (in Korean) doi:10.5338/KJEA.2005.24.1.024
  18. Park W.Y., D.C. Seo, J.S. Lim, S.K. Park, J.S. Cho, J.S. Heo, and H.S. Yoon 2008, Optimum configuration, filter media depth and wastewater load of small-scale constructed wetlands for treating the hydroponic waste solution in greenhouses. Korean J Environ Agric 27:217-224. (in Korean) doi:10.5338/KJEA.2008.27.3.217
  19. RDA (Rural Development Administration) 2000, Methods of soil chemical analysis. RDA, Suwon, Korea. (in Korean)
  20. Rho M.Y., Y.B. Lee, H.S. Kim, K.B. Lee, and J.H. Bae 1997, Development of nutrient solution suitable for closed system in substrate culture of cucumber. J Bio Fac Env 6:1-14. (in Korean)
  21. Roh M.Y. 2003, Nutrient solution recycling in closed hydroponics. Protected Hort Plant Fac 16:35-42. (in Korean)
  22. Searle P.L. 1984, The berthelot or indophenol reaction and its use in the analytical chemistry of nitrogen. Analyst 109:549-568. doi:10.1039/AN9840900549
  23. Son J., D. Choi, M. Kong, S. Yun, M. Park, and D. Kang 2019, The water quality and purification load assessment of drain water of facility horticulture areas. J Environ Sci Int 28: 1199-1208. (in Korean) doi:10.5322/JESI.2019.28.12.1199
  24. Sonneveld C., and W. Voogt 2009, Plant nutrition of greenhouse crops. Springer, New York, USA, pp 83-102.
  25. Uronen K.R., 1995, Leaching of nutrients and yield of tomato in peat and rockwool with open and closed system. Acta Hortic 401:443-449. doi:10.17660/ActaHortic.1995.401.54
  26. Wolf B. 1994, Determination of nitrate, nitrate, and ammonium nitrogen rapid photometric determination in soil and plant extracts. Ind Eng Chem Anal Ed 16:446-447. doi:10.1021/i560131a013
  27. Yang J.E., C.J. Park, Y.S. Ok, K.Y. Yoo, and K.H. Kim 2005, Fate of nitrogen and phosphorous in hydroponic waste solution applied to the upland soils. Korean J Environ Agric 24:132-138. (in Korean) doi:10.5338/KJEA.2005.24.2.132
  28. Yun S.W., J.M. Lim, J.P. Moon, J.K. Jang, M.J. Park, J.K. Son, H.H. Lee, H.M. Seo, and D.K. Choi 2021, Analysis of the fertilizing effects of hydroponic waste solution on lettuce (Lactuca sativa var. captitata) cultivation: Based on inorganic nitrogen content. J Korean Soc Agric Eng 63:13-21. (in Korean) doi:10.5389/KSAE.2021.63.4.013