Adsorption Features of Lead Ion on Waste Undaria pinnatifida

폐기된 해조류를 이용한 납 이온의 흡착 특성

  • 서명순 (이화여자대학교 환경학과) ;
  • 김동수 (이화여자대학교 환경학과)
  • Published : 2004.08.01

Abstract

Basic studies have been conducted regarding the attempt of the utilization of waste Undaria pinnatifida as an adsorbent for the adsorption treatment of lead-containing wastewater. Undaria pinnatifida was found to be chiefly composed of hyo-carbonaceous compounds and have a fairly high specific surface area, which suggesting the possibility of its application as a Potential adsorbent. The electrokinetic Potential of Undaria pinnatifida particles was observed to be negatively highest at around pH 8 and the fact that its electrokinetic potentials are negative at the whole pH range supported it might be an efficient adsorbent especially for cationic adsorbates. Under the experimental conditions, $Pb^{2+}$ was found to mostly adsorb onto Undaria pinnatifida within a few minutes and reach the equilibrium in adsorption within ca. 30 minutes. The adsorption of $Pb^{2+}$ was exothermic and explained well by e Freundlich model. Acidic pretreatment of Undaria pinnatifida enhanced its adsorption capacity for $Pb^{2+}$ , however, the reverse was observed for alkaline pretreatment. The formation of organometallic complex between $Pb^{2+}$ and some functional groups on the surface of Undaria pinnatifida was considered to be one of the main drives for adsorption. Finally the adsorbability of$ Pb^{2+}$ was examined to be rather affected by several solution features such as the coexistence of other adsorbate, the variation of ionic strength, and the concentration of complexing agent.

수산물 처리시 폐기물로 발생하는 Undaria pinnatifida 를 $Pb^{2+}$ 가 함유된 폐수의 흡착처리시 흡착제로 활용하는 방안을 검토하였다. 성분분석 결과, Undaria pinnatifida는 주로 탄화수소화합물로 구성되어 있었으며 비표면적이 상당히 높아 흡착제로서의 잠재적 활용도가 큰 것으로 파악되었다. Undaria pinnatifida 입자의 Electrokinetic Potential은 pH 8 부근에서 음의 최대값을 보였으며 전 pH 범위에 걸쳐 음으로 하전되어 양이온의 흡착에 적합한 것으로 검토되었다. $Pb^{2+}$는 실험조건에서 반응개시 수 분 이내에 대부분이 흡착되었으며 평형에 도달하는 시간은 약 30분 정도인 것으로 나타났다. 또한, Undaria pinnatifida 표면에 대한 $Pb^{ 2+}$의 흡착은 Freundlich Isotherm 을 따르는 것으로 관찰되었으며 발열반응의 특성을 확인하였다. 산에 의한 흡착제의 전처리는 흡착능을 향상시켰으나 염기로 전처리할 경우에는 오히려 흡착능이 저하되었다. Undaria pinnatifida 표면에 존재하는 작용기들과 $Pb^{ 2+}$ 와의 Organometallic Complex 형성이 $Pb^{ 2+ }$의 흡착에 주요하게 작용하는 것으로 파악되었으며, 경쟁적 흡착질의 존재, ionic Strength 의 변화, 그리고 착화합물제가 수중에 공존할 경우 $Pb ^{2+}$ /의 흡착성이 상당한 영향을 받는 것으로 관찰되었다.

Keywords

References

  1. Dabrowski, A, Hubicki, Z., Podkoscielny, P. and Robens, E., 2004: Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method, Chemosphere, 56, pp. 91-106 https://doi.org/10.1016/j.chemosphere.2004.03.006
  2. Chen, F., Shue, M. and Chen, T., 2004: Evolution on estrogenicity and oxidative hepatotoxicity of fossil fuel industrial wastewater before and after the powdered activated carbon treatment, Chemosphere, 55, pp. 1377-1385 https://doi.org/10.1016/j.chemosphere.2003.11.058
  3. Wang, Y. and Reardon, E. J., 2001: A siderite/limestone reactor to remove arsenic and cadmium from wastewaters, Applied Geochemistry, 16, pp. 1241-1249 https://doi.org/10.1016/S0883-2927(01)00023-3
  4. Kang, S., Lee, J., Moon, S. and Kim, K, 2004: Competitive adsorption characteristics of Co2+, Ni2+, and cr3+ by IRN-77 cation exchange resin in synthesized wastewater, Chemosphere, 56, pp. 141-147 https://doi.org/10.1016/j.chemosphere.2004.02.004
  5. Ferreira, S. L. C., Andrade, H. M. C. and dos Santos, H. C., 2004: Characterization and determination of the thermodynamic and kinetic properties of the adsorption of the molybdenum(VI)-calmagite complex onto active carbon, J. of Colloid and Interface Science, 270, pp. 276-280 https://doi.org/10.1016/j.jcis.2003.07.042
  6. Sekhar, K. C., Kamala, C. T., Chary, N. S., Sastry, A. R. K., Rao, T. N. and Vairamani, M., 2004: Removal of lead from aqueous solutions using an immobilized biomaterial derived from a plant biomass, J. of Hazardous Materials, B108, pp. 111-117
  7. Gupta, V. K. and Ali, I., 2004: Removal of lead and chromium from wastewater using bagasse fly ash - a sugar industry waste, J. of Colloid and Interface Science, 271, pp. 321-328 https://doi.org/10.1016/j.jcis.2003.11.007
  8. Guo, G. Chen, Y. and Ying, W., 2004: Thermal, spectroscopic and X-ray diffractional analyses of zirconium hydroxides precipitated at low pH values, Materials Chemistry and Physics, 84, pp. 308-314 https://doi.org/10.1016/j.matchemphys.2003.10.006
  9. Bishnoi, N. R, Bajaj, M., Sharma, N. and Gupta, A., 2004: Adsorption of Cr(VI) on activated rice husk carbon and activated alumina, Bioresource Technology, 91, pp. 305-307 https://doi.org/10.1016/S0960-8524(03)00204-9
  10. Li, Y. H., Lee, C. W. and Gullett, B. K., 2003: Importance of activated carbon's oxygen surface functional groups on elemental mercury adsorption, Fuel, 82, pp. 451-457 https://doi.org/10.1016/S0016-2361(02)00307-1
  11. Jianlong, W., Xinmin, Z., Decai, D. and Ding, Z., 2001: Bioadsorption of lead(II) from aqueous solution by fungal biomass of Aspergillus niger, J. of Biotechnology, 87, pp. 273-277 https://doi.org/10.1016/S0168-1656(00)00379-5
  12. Rivera-Utrilla, J., Bautista-Toledo, I., Ferro-Garcia, M. A. and Moreno-Castilla, C., 2003: Bioadsorption of Pb(II), Cd(lI), and Cr(VI) on activated carbon from aqueous solution, Carbon, 41, pp. 323-330 https://doi.org/10.1016/S0008-6223(02)00293-2
  13. Ajmal, M., Rao, A. K. R., Rais, A. and Jamel, A., 2000: Adsorption studies on Citrus reticulata: removal and recovery of Ni(II) from electroplating wastewater, J. of Hazardous Materials, B79, pp. 117-131.
  14. Jianlong, W., Yi. Q., Horan, N. and Stentiford, E., 2000: Bioadsorption of pentachlorophenol (PCP) from aqueous solution by activated sludge biomass, Bioresource Technology, 75, pp. 157-161 https://doi.org/10.1016/S0960-8524(00)00041-9
  15. Valls, M., de Lorenzo, V., Gonzalez-Duarte, R. and Atrian, S., 2000: Engineering outer-membrane proteins in Pseudomonas putida for enhanced heavy-metal bioadsorption, J. of Inorganic Biochemistry, 79, pp. 219-223 https://doi.org/10.1016/S0162-0134(99)00170-1
  16. Sparks, D. L., 1995: 'Environmental Soil Chemistry', p. 42, Academic Press, San Diego
  17. Balci, S., 2004: Nature of ammonium ion adsorption by sepiolite: analysis of equilibrium data with several isotherms, Water Research, 38, pp. 1129-1138 https://doi.org/10.1016/j.watres.2003.12.005
  18. Atkins, P. W., 1995: 'Physical Chemistry', pp. 285-286, Oxford University Press, Oxford
  19. Skoog, D. A. and Leary, J. J., 1992: 'Principles of Instrumental Analysis', 4th Ed., pp. 277-279, Saunders College Publishing, Fort Worth
  20. Twardowska, I. and Kyziol, J., 2003: Sorption of metals onto natural organic matter as a function of complexation and adsorbent-adsorbate contact mode, Environment International, 28, pp. 783-791 https://doi.org/10.1016/S0160-4120(02)00106-X
  21. dos Santos, M. M. C., Vilhena, M. F. and Goncalves, M. L. S., 2001: Interaction of lead(II) with sediment particles: a mercury microelectrode study, Analytica Chimica Acta, 441, pp. 191-200 https://doi.org/10.1016/S0003-2670(01)01108-4
  22. Cecconi, F., Chilardi, C. A., Midollini, S. and Orlandini, A., 2003: A new lead(II) inorganic-organic hybrid of the P,P-diphenylmethylene-diphosphinate ligand: synthesis and X-ray characterization of the [Pb(CH2(P(Ph)02)2)] complex, Inorganic chemistry communications, 6, pp. 546-546 https://doi.org/10.1016/S1387-7003(03)00037-6
  23. Greenwood, N. N. and Eamshar, A., 1990: 'Chemistry of the Elements', p. 458, Pergamon Press, Oxford