• Title/Summary/Keyword: Bio-solar energy

Search Result 97, Processing Time 0.033 seconds

Heating Efficiency of Difference Heat Collection Methods for Greenhouse (유리온실의 태양열 집열방법별 집열효과)

  • 최영하;이재한;권준국;박동금;이한철
    • Journal of Bio-Environment Control
    • /
    • v.9 no.3
    • /
    • pp.166-170
    • /
    • 2000
  • Three methods for heat collection, which were the flat solar collector, two fan with radiator, and square pipe method, were studied to sue efficiently solar energy in the three different glasshouses for two years. The flat plate solar collector method was made use of the commercial solar collector with collection area of 24$m^2$, the method of two fans with radiators collected solar energy at the top of the glasshouse. An thermal storage tank was constructed underneath in teach glasshouses. When an area of 1,000$m^2$ was heated to the minimum temperature of 9$^{\circ}C$, the decrease rate of heating fuel for the flat plate solar collector, the fan attached radiator and the square pipe methods were 7%, 19% and 28% respectively. The flat plate solar collector method, which could be heated approximately 40-50$m^2$, was currently used by most of the farmer. Under the condition, the decrease rate of annual heating fuel was 14% which was not better for an economic annual heating fuel. If the fan with radiator method was operated, the use of installation and maintenance were required. So, it could not be good economic efficiency of solar heating. The heating efficiency of the square pipe method was relatively better thant those of the flat plate solar collector or the fan attached radiator. Since the cost of materials and its installation of the use of square pipe method was lower than any other method. However, corrosion of the pipe, greater shade in the greenhouse and strength against the square pipe were problems that should be overcome in the square pipe method.

  • PDF

An Economic Evaluation about Research and Development for Renewable energy in Korea (대체에러지 기술개발에 대한 수익성 평가분석)

  • 전영서;김진오
    • Journal of Korea Technology Innovation Society
    • /
    • v.7 no.2
    • /
    • pp.325-349
    • /
    • 2004
  • This paper tried to evaluate an economic analysis about research and development far areas of renewable resource in Korea. To evaluate this validity, we tried to calculate the spillover effect of R&D investment through input-output table. In the first stage of spillover effect, we simply calculate the rate of return on R&D investment for renewable energy resources in Korea through the input-output model, which can calculate the value added as well as output based upon the price of 2000 year. According to the first stage calculation, the rate of return on R&B investment in solar heat is higher than any other renewable energy. In the second stage we tried to calculate the second round of spill over effect, which derives from the additional amount of supply of renewable resources due to the R&D investment. The overall evaluation of R&D invesment including the first stage as well as second stage spillover effect shows that bio-energy and waste energy generate 14 times as well as 2.5 times in the rate of return respectively.

  • PDF

Color therapy and application of color to oriental medical science (색채치료(色彩治療)와 한의학(漢醫學)에서의 색(色)의 적용(適用))

  • Park, Seung Lim;Kang, Jung Soo
    • Journal of Haehwa Medicine
    • /
    • v.12 no.1
    • /
    • pp.79-102
    • /
    • 2003
  • It has been believed that the human body can be effected by color, sound, smell, and taste - each of them is based on the original character. Out of these elements, the color can be a mediation that absorbs energy into human body and adapts it to the creatures whose life are definitely based on the solar energy. This thesis makes a study of the possibility of applying the color to the oriental medical science by researching the color psychology and therapy which are studied in the west medical science, the recognition and application of color developed from orientalism, and the opinion of color in the oriental medical science. Color therapy is one of the psychological treatment techniques that are able to recover and maintain the health with the rays of the sun rays and the color. The light and the color have its energy that may relax, harmonize, encourage, or excite a human being. This is because the wavelength and the vibration of each color will take effects to human body. The core energy of absorbing and distributing the color vibration is made in the 7 "chakras" in the body, which are the pith and marrow of bio-energy directly connected with the center of the nervous system. There are several methods in the color therapy - the treatment of solar ray, the color-bath, the water-therapy using color energy, the inducement of the solar energy into the body, the acupuncture, the therapy of crystal and jewel, and the self-suggestion dependent upon the color. The color therapy can help us to keep our balance by changing the emotion into the positive energy that will cure the disease with color. As a result, this method not only must be useful to cure physical disease, or develop into good health but also will be used in conforming itself to the mental disease. The color therapy mainly uses the eight colors, which are made by mixing Red, Yellow and Blue basic colors in the field. They are never used in the treatment, but they will go along with complementary colors. This rule is closely connected with the theory of yin and yang which lies at the root of oriental philosophy, and with the treatment principle of oriental medical science whose field is focused on the balancing the body mentally as well as physically. In the East, it is the Obangsaek - the color of blue, red, yellow, white, and black in the theory of yin and yang and the five elements that have been used in helping people having trouble with their health for a long time. In the view of the oriental medical science, these five colors attached the theory of five-elements have been very useful to the physiology, the pathology, or the diagnosis, and been applied to the medical treatment, combining themselves with a five-taste in medicinal herbs. Since the study of color and human physiology has been made in some different interest and fields these days, it goes to prove that the different function of color we couldn't have got before becomes very useful to the medical science. The color must be worth researching the diversity for applying itself to the oriental medical science.

  • PDF

A Study on the Characteristics of Manufactured Photocatalyst Using maleinized Acrylated Epoxidized Soybean Oil for the Dye-sensitized Solar Cell (염료감응 태양전지를 위한 Maleinized Acrylated Epoxidized Soybean Oil를 이용하여 제조된 광촉매의 특성에 관한 연구)

  • Park, Ki-Min;Kim, Tae-Young;Kim, Jeong-Guk;Cho, Sung-Yong
    • Korean Chemical Engineering Research
    • /
    • v.49 no.3
    • /
    • pp.381-386
    • /
    • 2011
  • Chemically functionalized plant oils, namely maleinized acrylated epoxidized soybean oil(MAESO), were used as a new bio based binders for photoelectrodes of dye-sensitized solar cells. The photocatalysts were characterized by field emission scanning electron microscope(FE-SEM), energy dispersive X-ray spectrometer(EDS), X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS) and nitrogen adsorption analyses. The surface area and number of appropriate pores were increased in the $TiO_{2}$ particles prepared using the plant oil binders in comparison with the P-25 photocatalyst, due to the larger number of functionalities. The functional groups of OH on the surface of the $TiO_{2}$ particles increased from 9.9% to 16.62%.

Synthesis and Characterization of Au@TiO2 Core-Shell Microspheres (Au@TiO2 코어쉘 미세 입자의 합성 및 특성 평가)

  • Kim, Sun-Geum;Jang, Ha Jun;Jang, Jaewon;Shim, Jae-Hyun;Baek, Sung-June
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.4
    • /
    • pp.392-397
    • /
    • 2022
  • We present the structural and optical properties of Au@TiO2 core-shell microsphere structure prepared by a hydrothermal synthesis method. As a way to improve the efficiency of organic solar cells, the Au@TiO2 core-shell microsphere was synthesized to use the local surface plasmon resonance (LSPR) phenomenon. The synthesized results were confirmed to have the Au@TiO2 core-shell structure using a high-resolution transmission electron microscopy. An absorption was observed to occur at 527 nm belonging to the visible light region using a visible light spectroscopy, which supports the LSPR phenomenon. We suggest that the Au@TiO2 core-shell microsphere is highly likely to be applied to organic solar cells including dye-sensitized solar cells. In addition, we expect it to be widely used not only in the energy but also in the bio as well as in the environmental fields.

Comparison of Environmental Conditions and Insulation Effect between Air Inflated and Conventional Double Layer Greenhouse (공기주입 및 관행 이중피복온실의 재배환경 및 단열성능 비교)

  • Jayasekara, Shanika N.;Na, Wook H.;Owolabi, Abdulhameed B.;Lee, Jong W.;Rasheed, Adnan;Kim, Hyeon T.;Lee, Hyun W.
    • Journal of Bio-Environment Control
    • /
    • v.27 no.1
    • /
    • pp.46-53
    • /
    • 2018
  • This study was conducted to determine which greenhouse provided good environmental conditions for strawberry production, and performed better at conserving energy. Temperature, RH, VPD, $CO_2$, solar radiation, yield, and fuel consumption were the parameters analyzed. The temperatures of both greenhouses were well controlled in order to provide optimal day and night temperatures for strawberry production. The air inflated double layer greenhouse had higher RH values (more than 90% at night), which led to higher disease occurrence, in comparison to the conventional double layer greenhouse. Furthermore, the air inflated double layer greenhouse had lower VPD values than the conventional double layer greenhouse. Therefore, better RH and VPD were observed in the conventional double layer greenhouse. Higher $CO_2$ concentration was observed in the air inflated double layer greenhouse while the conventional double layer greenhouse ventilated better than the air inflated greenhouse, because of its side ventilators. Moreover, higher solar radiation in the conventional double layer greenhouse resulted in higher yield, in comparison to the air inflated double layer greenhouse. Thus, we can conclude that the conventional double layer greenhouse provided a better environment for crop growth, in comparison to the air inflated double layer greenhouse. Regarding fuel consumption, the air inflated double layer greenhouse had lower fuel consumption than the conventional double layer greenhouse. Therefore, from an energy consumption point of view, we can conclude that the air inflated double layer greenhouse performed better than the conventional double layer greenhouse.

Relationship between Exposure Index and Overheating Index in Complex Terrain (복잡지형에서 사면 개방도과 계절별 과열지수 사이의 관계)

  • 정유란;황범석;서형호;윤진일
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.5 no.3
    • /
    • pp.200-207
    • /
    • 2003
  • '||'||'||'&'||'||'||'quot;Overheating index'||'||'||'&'||'||'||'quot;, the normalized difference in incident solar energy between a target surface and a level surface, is helpful in estimating the spatial variation in daily maximum temperature at the landscape scale. It can be computed as the ratio of the 4-hour cumulative solar irradiance surplus or deficit from that over a level surface to the maximum possible deviation (15 MJ $m^{-2}$ ) during the midafternoon. Ecosystem models may, for simplicity, use an empirical proxy (exposure index) variable combining slope and aspect in place of the overheating index to account for the variation of midafternoon solar irradiance. A comparative study with real-world landscape data was carried out to evaluate the performance of exposure index in replacing the overheating index. Overheating indices for summer solstice, fall equinox and winter solstice were calculated at 573,650 grid cells constituting the land surface of Donggye-Myun, Sunchang County in Korea, based on a 10-m DEM. Exposure index was also calculated for the same area and fitted for the variation of overheating index to derive a 2$^{nd}$ -order linear regression equation. The coefficient of determination ($R^2$) was 0.50 on summer solstice, 0.56 on fall equinox, and 0.44 on winter solstice, respectively. These are much lower than the theoretically calculated $R^2$ values ranging from 0.7 in summer to 0.9 in autumn. According to our study, exposure index failed to accurately predict the cumulative solar irradiance over a complex terrain, hindering its application to daily maximum temperature estimation. We suggest direct calculation of the overheating index in preference to using the exposure index.

The Effect of Greenhouse Climate Change by Temporary Shading at Summer on Photo Respiration, Leaf Temperature and Growth of Cucumber (여름철 수시차광에 의한 온실 환경변화가 오이의 광호흡, 엽온, Thermal breakdown 등 생육에 미치는 영향)

  • Kim, Dong Eok;Kwon, Jin Kyung;Hong, Soon Jung;Lee, Jong Won;Woo, Young Hoe
    • Journal of Bio-Environment Control
    • /
    • v.29 no.3
    • /
    • pp.306-312
    • /
    • 2020
  • This study was conducted to investigate cucumber plants response to greenhouse environments by solar shading in greenhouse in the summer. In order to estimate heat stress reduction of cucumber plants by solar shading in greenhouse, we measured and analyzed physiological conditions of cucumber plants, such as leaf temperature, leaf-air temperature, rubisco maximum carboxylation rate, maximum electron transport rate, thermal breakdown, light leaf respiration, etc. Shading levels were 90% mobile shading of full sunlight, 40% mobile shading of full sunlight and no shading(full sunlight). The 90% shading screen was operated when the external solar radiation is greater than 650 W·m-2. Air temperature, solar radiation, leaf temperature, leaf-air temperature and light leaf respiration in the 90% shading of full sunlight was lower than those of 40% shading and no shading. Rubisco maximum carboxylation rate, arrhenius function value and light leaf respiration of the 90% shading were significantly lower than those of 40% shading and no shading. The thermal breakdown, high temperature inhibition, of 90% shading was significantly higher than that of 40% shading and no shading. Therefore, these results suggest that 90% mobile shading made a less stressful growth environment for cucumber crops.

Effects of Lettuce Cultivation Using Optical Fiber in Closed Plant Factory (폐쇄형 식물공장내 태양광 파이버를 이용한 상추 재배효과)

  • Lee, Sanggyu;Lee, Jaesu;Won, Jinho
    • Journal of Bio-Environment Control
    • /
    • v.29 no.2
    • /
    • pp.105-109
    • /
    • 2020
  • This study was conducted to the improvement of solar light-based artificial light supply system and effect of lettuce cultivation. The artificial light supply system was consisted of units such as light source, power, system measurement and controller. The light source supply was composed of a solar transmitter and an LED lamp. The power supply consisted of an leakage breaker, SMPS, LED controller and relay. The solar transmitter was made of a quartz optical fiber with optimal light transmission. Artificial light used white lamp among LEDs. System measurement and control consisted of touch screen, Zigbee communication module and light quantity sensor. The results of test confirmed that the LED light is automatically activated when the intensity measured by the light intensity sensor is 200 μmolm-2s-1 or less. Moreover, the leaf length, root length, chlorophyll content and root fresh weight of optical fiber treatment was hight than LED lamp treatment. Therefore, it can be inferred that the energy-saving solar light collector device can be effective in the indoor lettuce production. However, the use of LED lamp is also recommended to assure the availability of sufficient sunlight in cloudy and rainy days.

Effect of External Light Environment and Growing Degree Days on Strawberry Production (외부 광환경 및 생육도일온도가 딸기 생산량에 미치는 영향)

  • Lee, Taeseok;Kim, Jingu;Park, Seokho;Lee, Jaehan;Han, Kilsu;Moon, Jongpil
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.432-437
    • /
    • 2022
  • In this study, strawberries were grown during the two cultivation periods (first: 2020-2021, second: 2021-2022) to analyze the effect of the external light environment and growing degree days (GDD) on crop production. The temperature and humidity during day in a greenhouse in each cultivation period were similarly managed. At night, there was a statistical difference in temperature and humidity in the greenhouse between two periods. The accumulated solar radiation during the first cultivation period was high in September and October. Since January, the accumulated solar radiation during the second cultivation period was high. In the second cultivation period, the initial yield was small because the accumulated solar radiation and GDD was small. But accumulated yields and potential maximum yields in second cultivation period were larger than yields in the first cultivation period as the accumulated solar radiation and GDD increased. The sugar contents of strawberry decreased as GDD increased.