• Title/Summary/Keyword: Bio-signal measurement system

Search Result 96, Processing Time 0.025 seconds

Design of ECG Measurement System based on the Android (안드로이드기반의 심전도(ECG, Electrocardiogram) 측정 시스템 설계)

  • Kim, Woong-Sik;Kim, Jong-Ki
    • Journal of Internet Computing and Services
    • /
    • v.13 no.1
    • /
    • pp.135-140
    • /
    • 2012
  • As the recent advanced in BIO signal measurement technology, our computing platform is rapidly shifting from desktop PCs to Embedded System. Therefore, In this paper introduces an implementation of the same precision as a hospitan ECG system on the Android. The most important fact of the hospital system is connectivity among the PC such as separate means of communication, we can eliminate the separate means of communication through the Porting Embedded System on Android that can be receive ECG signal directly. We also implementation ECG App on Android that can analyze and show the data result directly.

Simulation of Signal Amplitudes and Signal-to-noise Ratios of $1^{st}$ order and $2^{nd}$ order Gradiometers with Various Baselines (다양한 기저선을 갖는 1차 및 2차 미분계의 신호크기 및 신호 대 잡음비 조사)

  • Kang, C.S.;Yu, K.K.;Lee, Y.H.;Kwon, H.;Kim, J.M.;Park, Y.K.;Lee, S.G.
    • Progress in Superconductivity
    • /
    • v.9 no.1
    • /
    • pp.40-44
    • /
    • 2007
  • We investigated signal-to-noise ratios (SNRs) of magnetocardiography (MCG) signals using the first-order and the second-order gradiometers of different baselines. The MCG signals were recorded using a measurement system with 61 magnetometers which measured the normal magnetic component to the chest surface. The distance between the chest surface and the bottom of the dewar was changed from 0 cm to 15 cm, and the MCGs were measured for each distance. By subtracting the other signals (distance = 1 to 15 cm) from the reference signal (distance =0 cm), we could simulate the first-order and the second-order gradiometer signals with various baselines. In addition, to evaluate the reproducibility of the simulation, we fabricated the wire wound first-order and second-order gradiometers which measured a normal magnetic component to the chest surface. The baselines of the first-order gradiometers were, respectively, 50 mm, 70 mm and 100 mm and the baseline of the second-order gradiometer was 50 mm. Using these gradiometers, we recorded the MCG signal and compared the SNR between the simulation and the measurement.

  • PDF

Measurement of Human Sensibility by Bio-Signal Analysis (생체신호 분석을 통한 인간감성의 측정)

  • Park, Joon-Young;Park, Jahng-Hyon;Park, Ji-Hyoung;Park, Dong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.935-939
    • /
    • 2003
  • The emotion recognition is one of the most significant interface technologies which make the high level of human-machine communication possible. The central nervous system stimulated by emotional stimuli affects the autonomous nervous system like a heart, blood vessel, endocrine organs, and so on. Therefore bio-signals like HRV, ECG and EEG can reflect one' emotional state. This study investigates the correlation between emotional states and bio-signals to realize the emotion recognition. This study also covers classification of human emotional states, selection of the effective bio-signal and signal processing. The experimental results presented in this paper show possibility of the emotion recognition.

  • PDF

Implementation of RFID based on the self-blood sugar measurement system (RFID기반의 자가 혈당측정 시스템의 구현)

  • Park, Tae-Jin;Lee, Jong-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.10
    • /
    • pp.2079-2086
    • /
    • 2011
  • Recently, technology of self diagnosis system which one of health-care has been research very active. With this, In this paper, we have to implement the self-blood sugar measurement system that is interlock with PC, RFID, and Bio-Signal glucose tester and accessible user interface. Therefore the equipments can performs accessible interface composition for communication between devices and PC, analysis and test of communication status of the RFID tag and reader that it easy to obtain the data of self-diagnosis linkage with PC, RFID, and Bio-Signal glucose tester. In other words, as result of communication protocol experiment with self-blood sugar measurement data, it has been showed to display a high-reliability result through year, month, and day, body temperature, and levels and check point of blood glucose.

Development of an Portable Urine Glucose Monitoring System (휴대용 뇨당 측정 시스템의 개발)

  • 박호동;이경중;윤형로
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.5
    • /
    • pp.397-403
    • /
    • 2002
  • Urine glucose monitoring system is a self-monitoring system that display the glucose level by non-invasive measurement method. In this paper, We developed a noninvasive urine glucose monitoring system that improved defects of urine glucose measurement with a colorimeter method and invasive blood glucose measurement method. This system consist of bio-chemical sensor for urine glucose measurements, signal detecting part, digital and signal analysis part, display part and power supplying part. The developed bio-chemical sensor for the measurement of urine glucose has good reproducibility, convenience of handing and can be mass-produced with cheap price. To evaluate the performance of the developed system, We performed the evaluation of confidence about the detection of glucose level by a comparison between a standard instrument in measuring glucose level and the developed system using standard glucose solutions mixed with urine. Standard error was 2.85282 from the evaluation of confidence based on regression analysis. Also, In analysis of S.D(standard deviation) and C.V(coefficient of validation) that are important parameters to evaluate system using bio-chemical sensor, S.D was 10% which falls under clinically valid value, 15%, and C.V was under 5%. Consequently from the above results, compared to blood glucose measurement, the system performance is satisfactory.

Integrated Bio-signal Management System Through Network (네트워크를 통한 의료정보관리시스템에 관한 연구)

  • Lee, W.H.;Suk, J.H.;Yoon, Y.R.;Yoon, H.R.;Kang, D.J.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.05
    • /
    • pp.151-153
    • /
    • 1996
  • The purpose of this paper is the development of Integrated Bio-signal Management System(IBMS) using the network. IBMS is the system to manage the medical signals that measured from the each independent medical measurement system module. Each has a LAN. We developed the file-server network using Novell Netware. Also, we developed the Graphic User Interface software for IBMS using Visual C++ at Windows 3.1.

  • PDF

Design and Implementation of Medical Information System using QR Code (QR 코드를 이용한 의료정보 시스템 설계 및 구현)

  • Lee, Sung-Gwon;Jeong, Chang-Won;Joo, Su-Chong
    • Journal of Internet Computing and Services
    • /
    • v.16 no.2
    • /
    • pp.109-115
    • /
    • 2015
  • The new medical device technologies for bio-signal information and medical information which developed in various forms have been increasing. Information gathering techniques and the increasing of the bio-signal information device are being used as the main information of the medical service in everyday life. Hence, there is increasing in utilization of the various bio-signals, but it has a problem that does not account for security reasons. Furthermore, the medical image information and bio-signal of the patient in medical field is generated by the individual device, that make the situation cannot be managed and integrated. In order to solve that problem, in this paper we integrated the QR code signal associated with the medial image information including the finding of the doctor and the bio-signal information. bio-signal. System implementation environment for medical imaging devices and bio-signal acquisition was configured through bio-signal measurement, smart device and PC. For the ROI extraction of bio-signal and the receiving of image information that transfer from the medical equipment or bio-signal measurement, .NET Framework was used to operate the QR server module on Window Server 2008 operating system. The main function of the QR server module is to parse the DICOM file generated from the medical imaging device and extract the identified ROI information to store and manage in the database. Additionally, EMR, patient health information such as OCS, extracted ROI information needed for basic information and emergency situation is managed by QR code. QR code and ROI management and the bio-signal information file also store and manage depending on the size of receiving the bio-singnal information case with a PID (patient identification) to be used by the bio-signal device. If the receiving of information is not less than the maximum size to be converted into a QR code, the QR code and the URL information can access the bio-signal information through the server. Likewise, .Net Framework is installed to provide the information in the form of the QR code, so the client can check and find the relevant information through PC and android-based smart device. Finally, the existing medical imaging information, bio-signal information and the health information of the patient are integrated over the result of executing the application service in order to provide a medical information service which is suitable in medical field.

Development of Wireless Respiratory Air Flow and Urinary Flow Measurement System for Home Healthcare (가정용 무선 호흡기류 및 요속신호 계측 시스템 개발)

  • Cha, Eun-Jong;Lee, In-Kwang;Lee, You-Mi;Han, Soon-Wha;Han, Jeong-Su;Suh, Jae-Won;Park, Chan-Sik;Kim, Kyung-Ah
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.9
    • /
    • pp.1350-1357
    • /
    • 2012
  • Medical system for personal health management recently changes its paradigm from hospital service to self home care based on ubiquitous technology for healthcare anywhere at any time. The present study developed a wireless bio-signal measurement system for patients to self manage pulmonary disease and benign prostate hyperplasia(BPH), both of which are chronic diseases with increasing frequency in modern society. Velocity-type respiratory air flow transducer adapted to develop respiratory module for pulmonary disease management was simplified in structure to measure uni-directional flow since most important diagnostic parameters are evaluated on the expiratory flow signal only. Standard weight measurement technique was introduced to obtain urinary flow signal for BPH management. Three load cell signals were acquired for averaging to minimize noise, followed by accuracy evaluation. Transmission and receiver modules were also developed with user program for wireless communication. Averaged relative errors were 2.05 and 1.02% for respiratory volume and maximal flow rate, respectively, and the relative error was 2.17% for urinary volume, demonstrating that both modules enabled very accurate measurements. Wireless communication distance was verified within 15m, long enough for home care application. The present system allows the user to select a necessary measurement module on a particular health demand and to immediately provide the self-test results, thus better quality health care would be possible.

Development of a transcutaneous system for implantable bio-signal measurement (생체신호계측을 위한 체내 이식형 무선송수신 시스템 개발)

  • Lee, Seung-Ha
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.23-28
    • /
    • 2008
  • In order to measure bio-signals, it is desirable to build a fully implantable system which connects directly to neural pathways or body tissue. A design scheme for fully implementable measurement system is proposed in this paper. Consisting of an implanted module and an external system, the proposed scheme delivers power and data between the two modules. The external module sends power via inductive link using a simple H-bridge type oscillator. Also, the implanted module sends measured data to the external system utilizing R/F communication technique at a frequency of ISM band. A stable communication and operation is achieved as the two types of channels are separated. Implemented in a compact size enough to be implanted in human body, the system exhibits good performance in experimental studies.

Implementation of Wireless ECG Measurement System Attaching in Chair for Ubiquitous Health Care Environment (유비쿼터스 헬스 케어 적용을 위한 의자 부착형 무선 심전도 측정 시스템 구현)

  • Ye, Soo-Young;Baik, Seong-Wan;Kim, Jee-Chul;Jeon, Gye-Rok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.8
    • /
    • pp.776-781
    • /
    • 2008
  • In this study, ubiquitous health care system attaching in chair to monitor ECG for health care was developed at the unconsciousness state. The system conveniently and simple measured ECG at non-consciousness. We measured the contact impedance to skin-electrode of metal mesh electrodes of the system. Contact impedance enable the electrode to use for ECG measurement. The results are that the impedance of the metal mesh electrodes according to sizes is low when the size is 4$cm^2$. As the result, when the size of the metal mesh electrode is 4$cm^2$, the electrode is fit for ECG measurement. We can acquired by positing the arm on the metal mesh electrode. The ECG signal was detected using a high-input-impedance bio-amplifier, and then passed filter circuitry. The measured signal transmitted to a PC through the bluetooth wireless communication and monitored. Data of the non-constrained ECG system attaching in chair is noise-data when comparing metal mesh electrode with the Ag/Agcl electrode but the data is significant to monitor ECG for check the body state.