• Title/Summary/Keyword: Bio-regeneration

Search Result 169, Processing Time 0.025 seconds

Effects of a xenographic bovine bone on the bone mineralization in human fetal osteoblasts (우골 유도 합성골이 사람 태아 골모세포의 골 광물화 과정에 미치는 영향)

  • Sun, Ki-Jong;Hyun, Ha-Na;You, Hyung-Keun;Shin, Hyung-Shik
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.4
    • /
    • pp.801-809
    • /
    • 2002
  • The ultimate goal of periodontal therapy is to promote the regeneration of lost periodontal tissue, there have been many attempts to develop a method to achieve this goal, hut none of them was completely successful. The purpose of this study is to evaluate the effects of Bio-Oss(R) on alkaline Phosphatase (ALP) activity in human fetal osteoblasts (hFOB1). The results of this study were as follows, in ALP Activity, 100 ${\mu}g/ml$ Bio-Oss(R) treated group showed significantly increased value than negative control group, but positive group($10^{-7}$ M dexamethasone treated group) showed the highest ALP activity at 3 day. In mineralization assay, numerous mineralized nodules were identified as darkly stained spots in 100${\mu}g/ml$ Bio-Oss(R) treated group than two control groups, whereas a small number of mineralized nodules were showed in the positive control. ALP may relate to the initial phase of bone nodule formation. On the basis of these results, this study showed Bio-Oss(R) is capable of accelerating new bone formation through hFOBl differentiation in vitro.

Direct Runoff Reduction Analysis and Application Feasibility Evaluation of Vegetation-type Facilities (식생형시설의 직접유출량 저감 효과분석 및 적용 방법 타당성 검토)

  • Hanyong Lee;Won Hee Woo;Youn Shik Park
    • Journal of Korean Society of Rural Planning
    • /
    • v.30 no.2
    • /
    • pp.69-77
    • /
    • 2024
  • As impervious area increases due to urbanization, rainfall on the impervious area does not infiltrate into the ground, and stormwater drains quickly. Low impact development (LID) practices have been suggested as alternatives to infiltrate and store water in soil layers. The practices in South Korea is applied to urban development projects, urban renewal projects, urban regeneration projects, etc., it is required to perform literature research, watershed survey, soil quality, etc. for the LID practices implementation. Prior to the LID implementation at fields, there is a need to simulate its' effect on watershed hydrology, and Storm Water Management Model (SWMM) provides an opportunity to simulate LID practices. The LIDs applied in South Korea are infiltration-based practices, vegetation-based practices, rainwater-harvesting practices, etc. Vegetation-based practices includes bio-retention cell and rain garden, bio-retention cells are mostly employed in the model, adjusting the model parameters to simulate various practices. The bio-retention cell requires inputs regarding surface layer, soil layer, and drain layer, but the inputs for the drain layer are applied without sufficient examination, while the model parameters or inputs are somewhat influential to the practice effects. Thus, the approach to simulate vegetation-based LID practices in SWMM uses was explored and suggested for better LID simulation in South Korea.

Histological Comparative Study of Rabbit Maxillary Sinus Augmentation with Bio-Oss and β-TCP (Bio-Oss와 β-TCP를 이용한 토끼 상악동 거상술 후의 조직학적 비교 연구)

  • Moon, Yong-Suk
    • Journal of Life Science
    • /
    • v.28 no.10
    • /
    • pp.1220-1232
    • /
    • 2018
  • The purpose of this animal study was to evaluate, by histological analysis, bone regeneration in rabbit maxillary sinuses with an anorganic bovine graft (Bio-Oss) and a ${\beta}-tricalcium$ phosphate (${\beta}-TCP$) grafting. Bilateral sinus augmentation procedures were performed in 12 adult male rabbits. Rectangular replaceable bony windows were made with a piezoelectric thin saw insert. In the Bio-Oss group, Bio-Oss was grafted and in the ${\beta}-TCP$ group, ${\beta}-TCP$ was grafted and covered by replaceable bony windows. The animals were sacrificed at 2, 4, and 8 weeks after the surgical procedure. The augmented sinuses were evaluated by histomorphometric analysis using hematoxylin-eosin, Masson trichrome, and tartrate-resistant acid phosphatase stains and also by immunohistochemical analysis of proliferating cell nuclear antigen (PCNA), type I collagen, and osteocalcin content. Histologically, new bone formation was found on the surface of Bio-Oss and ${\beta}-TCP$ particles from 2 weeks and continued to 8 weeks. Significant higher new bone formation was revealed in the ${\beta}-TCP$ group than in the Bio-Oss group at 8 weeks. The amount of graft materials was significantly decreased in the ${\beta}-TCP$ group and the number of osteoclasts was significantly increased in the ${\beta}-TCP$ group from 4 to 8 weeks. Immunoreactivity to PCNA was reduced at 8 weeks. The expression of type I collagen was significantly increased in the ${\beta}-TCP$ group at 2 weeks, but was significantly increased in the Bio-Oss group at 8 weeks. Immunoreactivity to osteocalcin was increased from 2 to 8 weeks. These histological results can help in the selection of graft materials for implants. Both Bio-Oss and ${\beta}-TCP$ are proven graft materials, however, these results indicate that ${\beta}-TCP$ showed better bone regeneration results in rabbit maxillary sinus augmentation.

Response of Odontoblast to the Bio-Calcium Phosphate Cement

  • Kim, Jin-Woo;Kim, Sung-Won;Kim, Gyoo-Cheon;Kim, Yong-Deok;Kim, Cheol-Hun;Kim, Bok-Joo;Kim, Uk-Kyu
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.33 no.4
    • /
    • pp.301-307
    • /
    • 2011
  • Purpose: If the tooth structure is damaged, then it is impossible to regenerate the tooth. The materials used to restore the tooth structure are not related to the composition of the tooth. The materials used to restore the structure can't replace the natural tooth because they just fill the defective structure. Calcium phosphate cement remineralizes the dentin and almost replaces the natural tooth, but there are some disadvantages. We conducted basic tests with Biomimetic CPC (Bio-CPC) to make sure of the possibility of the biomaterial to remineralize the defective tooth structure. Methods: In this study, the bioactivity and biocompatibility of Bio-CPC were evaluated for its potential value as the bio-material for regeneration of damaged tooth structure by conducting a cell toxicity assay (WST-1 assay), a cytokinesis-block micronucleus assay, a chromosomal aberration test, total RNA extraction and RT-PCR on MDPC-23 mouse odontoblast-like cells. Results: The in vitro cytotoxicity test showed that the Bio-CPC was fairly cytocompatible for the MDPC-23 mouse odontoblast-like cells. Conclusion: Bio-CPC has a possibility to be a new biomaterial and further study of Bio-CPC is needed.

Mechanical and Biological Characteristics of Reinforced 3D Printing Filament Composites with Agricultural By-product

  • Kim, Hye-Been;Seo, Yu-Ri;Chang, Kyeong-Je;Park, Sang-Bae;Seonwoo, Hoon;Kim, Jin-Woo;Kim, Jangho;Lim, Ki-Taek
    • Food Engineering Progress
    • /
    • v.21 no.3
    • /
    • pp.233-241
    • /
    • 2017
  • Scaffolds of cell substrates are biophysical platforms for cell attachment, proliferation, and differentiation. They ultimately play a leading-edge role in the regeneration of tissues. Recent studies have shown the potential of bioactive scaffolds (i.e., osteo-inductive) through 3D printing. In this study, rice bran-derived biocomposite was fabricated for fused deposition modeling (FDM)-based 3D printing as a potential bone-graft analogue. Rice bran by-product was blended with poly caprolactone (PCL), a synthetic commercial biodegradable polymer. An extruder with extrusion process molding was adopted to manufacture the newly blended "green material." Processing conditions affected the performance of these blends. Bio-filament composite was characterized using field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray spectroscopy (EDX). Mechanical characterization of bio-filament composite was carried out to determine stress-strain and compressive strength. Biological behaviors of bio-filament composites were also investigated by assessing cell cytotoxicity and water contact angle. EDX results of bio-filament composites indicated the presence of organic compounds. These bio-filament composites were found to have higher tensile strength than conventional PCL filament. They exhibited positive response in cytotoxicity. Biological analysis revealed better compatibility of r-PCL with rice bran. Such rice bran blended bio-filament composite was found to have higher elongation and strength compared to control PCL.

Evaluation of Forage Production and Feed Value of Sasa borealis in the Jeju Area (제주지역 조릿대의 사초생산성 및 사료가치평가)

  • Chung, Sang Uk;Seong, Hye Jin;Yun, Yeong Sik;Lee, Ga Eul;Oh, Young Kyoon;Baek, Youl Chang;Lee, Seul;Moon, Sang Ho
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.38 no.2
    • /
    • pp.135-139
    • /
    • 2018
  • This study was conducted to evaluate the forage production and feed value of Sasa borealis (S. borealis) in Jeju Island in order to improve the utilization of Sasa borealis and to help mitigate the problem of reduced plant species diversity caused by S. borealis in Hanlla Mountain. To investigate the forage production, three quadrat structures were installed in the S. borealis natural community in the middle part of Hanlla Mountain. From May to October 2017, S. borealis in quadrats was cut at a fixed time of each month, and then forage production and regenerated acidity per kg/ha were evaluated. For the evaluation of feed value, compositional analysis was performed on the monthly samples. In vitro digestion experiments were carried out using cannula mounted Hanwoo. In vitro neutral detergent fiber digestibility(IVNDFD) and in vitro acid detergent fiber digestibility(IVADFD) were measured after the experiment. Forage production of S. borealis showed relatively good regeneration ability in May and June, but the regeneration ability decreased as the cutting was repeated. In order to use S. borealis as a forage, it is considered efficient to feed black goats with good fiber decomposition or horses good palatability to S. borealis and relatively good digestibility.

Effect of Plant Growth Regulators and Media on Regeneration of Sorghum bicolor (L.) Moench (바이오에너지용 수수 품종의 재분화율 증진을 위한 배지와 생장조절제 효과)

  • Goh, Eun-Jeong;Seong, Eun-Soo;Yoo, Ji-Hye;Kil, Hyun-Young;Lee, Jae-Geun;Hwang, In-Seong;Kim, Nam-Jun;Ghimire, Bimal Kumar;Kim, Myong-Jo;Lee, Ju-Kyung;Lim, Jung-Dae;Kim, Na-Young;Yu, Chang-Yeon
    • Korean Journal of Plant Resources
    • /
    • v.24 no.2
    • /
    • pp.168-173
    • /
    • 2011
  • This study was carried out to optimize the embryogenic callus induction and plant regeneration from mature seeds of Sorghum bicolor. The effect of growth regulators was investigated on formation of embryogenic callus. The highest frequency of embryogenic callus was observed when the mature seeds were cultured on B5 medium supplemented with 2 mg/L 2,4-Dichlorophenoxyacetic acid (2,4-D). The highest frequency of plant regeneration from embryogenic callus was observed on MS medium with 0.5 $mg\;l^{-1}$ 6-benzyl amino purine (BAP) and 0.25 $mg\;l^{-1}$ indole-3-butyric acid (IBA) to optimize the shoot regeneration. High concentration of BAP (1 $mg\;l^{-1}$) supplemented with IBA (0.25 $mg\;l^{-1}$) was effective combination for shoot multiplication. MS medium supplemented with 1 $mg\;l^{-1}$ IBA was found to be the most effective for inducing roots. Normal rooted plantlets were transferred to the greenhouse for hardening with over 90% survival rate. Hence, this reproducible protocol could be useful for mass propagation and genetic transformation of S. bicolor.

The effect of maintenance period of non-resorbable membrane on bone regeneration in rabbit calvarial defects (가토 두개골 결손부에서 비흡수성 차단막의 유지 기간에 따른 골조직 형성효과)

  • Jung, Min-Gu;Jang, Hyun-Seon;Kim, Byung-Ock
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.3
    • /
    • pp.543-551
    • /
    • 2007
  • When clinicians faced with an insufficient volume of supporting bone on ideally esthetic and bio-mechanical position for dental implantation, guided bone regeneration(GBR) was indicated. Although GBR has wide application at clinic, proper time of membrane removal remains qustionable in using non-resorbable membrane, such as non-expanded polytetrafluoroethylene(PTFE), The aim of this study was to compare the effect of maintenance period of PTFE membrane on bone regeneration in rabbit calvarial defects. Eight adult New Zealand white female rabbits were used in this study. Four defects were surgically made in their calvaria. Using a trephine bur, 4 'through and through' defects were created and classified into 3 groups, which were consisted of control group(no graft), experimental group 1(autogenous bone)and experimental group 2(deproteinized bovine bone; $OCS-B^{(R)}$). The defects were covered with PTFE membrane($Cytoplast^{(R)}$). Membranes were removed after 1, 2, 4 and 8 weeks post-GBR procedure in 2 rabbits repectively, All rabbits were sacrificed after 8 week post-GBR procedure. Specimens were harvested and observed histologically. The results were as follow; 1) The use of graft material and membrane was necessary in GBR procedure. 2) When PTFE membranes were removed early, the most favorable bone regeneration was revealed in experimental group T, followed by experimental group II and control group. 3) On GBR, it is recommended that membrane should maintain for 4 weeks with autogenous graft. As well, the use of xenograft need longer maintenance period than autogenous bone. Further evaluations will be needed, such as histomorphologic research, more species and different kinds of graft materials. And on the basis of these studies, clinical researches would be required.

Regenerative potential of biphasic calcium phosphate and enamel matrix derivatives in the treatment of isolated interproximal intrabony defects: a randomized controlled trial

  • Pal, Pritish Chandra;Bali, Ashish;Boyapati, Ramanarayana;Show, Sangita;Tejaswi, Kanikanti Siva;Khandelwal, Sourabh
    • Journal of Yeungnam Medical Science
    • /
    • v.39 no.4
    • /
    • pp.322-331
    • /
    • 2022
  • Background: The combined use of biomaterials for regeneration may have great biological relevance. This study aimed to compare the regenerative potential of biphasic calcium phosphate (BCP) alone and with growth factor enamel matrix derivatives (EMDs) for the regeneration of intrabony defects at 1 year. Methods: This randomized controlled trial included 40 sites in 29 patients with stage II/III periodontitis and 2/3 wall intrabony defects that were treated with BCP alone (control group) or a combination of BCP and EMD (test group). BCP alloplastic bone grafts provide better bio-absorbability and accelerate bone formation. EMDs are commercially available amelogenins. Mean values and standard deviations were calculated for the following parameters: plaque index (PI), papillary bleeding index (PBI), vertical probing pocket depth (V-PPD), vertical clinical attachment level (V-CAL), and radiographic defect depth (RDD). Student paired and unpaired t-tests were used to compare the data from baseline to 12 months for each group and between the groups, respectively. The results were considered statistically significant at p<0.05. Results: At 12 months, the PI and PBI scores of the control and test groups were not significantly different (p>0.05). The mean V-PPD difference, V-CAL gain, and RDD difference were statistically significant in both groups at 12 months (p<0.001 for all parameters). Intergroup comparisons showed that the mean V-PPD reduction (2.13±1.35 mm), V-CAL gain (2.53±1.2 mm), and RDD fill (1.33±1.0 mm) were statistically significant between the groups at 12 months (p<0.001 for all parameters). Conclusion: BCP and EMDs combination is a promising modality for the regeneration of intrabony defects.

Callus induction and plant regeneration from immature zygotic embryos of various maize genotypes (Zea mays L .) (다양한 계통의 옥수수 미성숙배로부터 캘러스 유도와 식물체 재분화)

  • Hong, Joon Ki;Park, Ki Jin;Lee, Gang-Seob;Kim, Dool Yi;Kim, Ju-Kon;Lee, Seung Bum;Suh, Eun Jung;Lee, Yeon-Hee
    • Journal of Plant Biotechnology
    • /
    • v.44 no.1
    • /
    • pp.49-55
    • /
    • 2017
  • We investigated the callus induction and plant regeneration ability of 16 maize genotypes, including the Korean inbred lines, using 9 to 15 day-old immature zygotic embryos from maize grown in pots and from field cultures. Immature zygotic embryos placed on MS medium supplemented with L-proline 0.7 g/L, MES 0.5 g/L, Dicamba 1.5 mg/L, 2,4-D 0.5 mg/L, $AgNO_3$ 4 mg/L, and sucrose 20 g/L, showed the highest frequency of callus induction. The highest number of shoots regenerated when the embryogenic callus were transferred to MS medium supplemented with 5 mg/L zeatin. The root formation was observed when shoots were grown on MS medium supplemented with 0.2 mg/L indole-3-butyric acid (IBA). Additionally, under the same culture conditions, immature zygotic embryos from maize grown in the field also had a high frequency of plant regeneration. Except one genotype, 15 genotypes showed callus induction and shoot regeneration. Among the 16 genotypes tested, H99, B98, HW3, and B73 yielded the best plant regeneration. H99 showed maximum shoot formation from the primary embryogenic callus. The results suggest that genotypes and growth conditions of the maize plant plays very important roles for enhancing the embryogenesis competence of immature zygotic embryos. The successful regeneration from immature zygotic embryos of maize inbred lines provides a basis for molecular breeding of new cultivars by genetic transformation.