Browse > Article
http://dx.doi.org/10.7732/kjpr.2011.24.2.168

Effect of Plant Growth Regulators and Media on Regeneration of Sorghum bicolor (L.) Moench  

Goh, Eun-Jeong (Bioherb Research Institute, Kangwon National University)
Seong, Eun-Soo (Bioherb Research Institute, Kangwon National University)
Yoo, Ji-Hye (Bioherb Research Institute, Kangwon National University)
Kil, Hyun-Young (Bioherb Research Institute, Kangwon National University)
Lee, Jae-Geun (Bioherb Research Institute, Kangwon National University)
Hwang, In-Seong (Bioherb Research Institute, Kangwon National University)
Kim, Nam-Jun (Bioherb Research Institute, Kangwon National University)
Ghimire, Bimal Kumar (Department of Applied Life Science, Konkuk University)
Kim, Myong-Jo (Division of Bio-resources Technology, College of Agriculture and Life Science, Kangwon National University)
Lee, Ju-Kyung (Division of Bio-resources Technology, College of Agriculture and Life Science, Kangwon National University)
Lim, Jung-Dae (Department of Herbal Medicine Resource, Kangwon National University)
Kim, Na-Young (Food Service Cuisine Songho College)
Yu, Chang-Yeon (Bioherb Research Institute, Kangwon National University)
Publication Information
Korean Journal of Plant Resources / v.24, no.2, 2011 , pp. 168-173 More about this Journal
Abstract
This study was carried out to optimize the embryogenic callus induction and plant regeneration from mature seeds of Sorghum bicolor. The effect of growth regulators was investigated on formation of embryogenic callus. The highest frequency of embryogenic callus was observed when the mature seeds were cultured on B5 medium supplemented with 2 mg/L 2,4-Dichlorophenoxyacetic acid (2,4-D). The highest frequency of plant regeneration from embryogenic callus was observed on MS medium with 0.5 $mg\;l^{-1}$ 6-benzyl amino purine (BAP) and 0.25 $mg\;l^{-1}$ indole-3-butyric acid (IBA) to optimize the shoot regeneration. High concentration of BAP (1 $mg\;l^{-1}$) supplemented with IBA (0.25 $mg\;l^{-1}$) was effective combination for shoot multiplication. MS medium supplemented with 1 $mg\;l^{-1}$ IBA was found to be the most effective for inducing roots. Normal rooted plantlets were transferred to the greenhouse for hardening with over 90% survival rate. Hence, this reproducible protocol could be useful for mass propagation and genetic transformation of S. bicolor.
Keywords
Auxin; Cytokinin; Embryogenic callus; Sorghum bicolor;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Mamun, M. A., M. B. H. Sikdar, D. K. Paul, M. Rahman and R. Islam. 2004. In vitro micropropagation of some important sugarcane varieties of Bangladesh. Asian J. Plant Sci. 3:666-669.   DOI
2 Han, F. G., H. Y. Zhao, F. Lin and L. G. Yang. 1997. Screening for salt tolerant lines through in vitro culture under salt stress conditions and studies on their different characters. Acta Agron. Sinica. 23:491-495.
3 Jogeswar, G., D. Ranadheer, V. Anjaiah and P. B. Kavi Kishor. 2007. High Frequency somatic embryogenesis and regeneration in different genotypes of Sorghum bicolor (L.) Moench from immature inflorescence explants. In Vitro Cell. Develop. Biol. Plant 43:159-166.
4 Kaeppler, H. F. and J. F. Pedersen. 1997. Evaluation of 41 elite and exotic inbred sorghum genotypes for high quality callus production. Plant Cell Tiss. Org. Cult. 48:71-75.   DOI   ScienceOn
5 Gamborg, O. L., R. A. Miller and K. Ojima. 1968. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 50:151-158.   DOI   ScienceOn
6 Gupta, S., V. K. Khanna, R. Singh and G. K. Garg. 2006. Strategies for overcoming genotypic limitations of in vitro regeneration and determination of genetic components of variability of plant regeneration traits in sorghum. Plant Cell Tiss. Org. Cult. 86:379-388.   DOI   ScienceOn
7 Hagio, T. 2002. Adventitious shoot regeneration from immature embryos of sorghum. Plant Cell Tiss. Org. Cult. 68:65-72.   DOI   ScienceOn
8 Cai, T. and L. Butler. 1990. Plant regeneration from embryogenic callus initiated from immature inflorescence of several high-tannin sorghums. Plant Cell Tiss. Org. Cult. 20:101-110.   DOI   ScienceOn
9 Chu, C. C., C. C. Wang, C. S. Sun, C. Hsu, K. C. Yin, C. Y. Chu and F. Y. Bi. 1975. Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen sources. Scientia Sinic. 18:659-668.
10 Elkonin, L. A. and N. V. Pakhomova. 1996. Influence of nitrogen sources on induction and growth of embryogenic callus in sorghum. Inter. Sorghum and Millets Newsletter 37:68-69.
11 Cho, N. K., Y. K. Kang, C. K. Song, Y. C. Jeun, J. S. Oh, Y. I. Cho and S. J. Park. 2004. Effects of planting density on growth, forage yield and chemical composition of Jeju native Sorghum (Sorghum bicolor L.). J. Kor. Grassl. Sci. 24:225-230 (in Korean).   DOI
12 Bai, Z. L., L. Q. Wang, L. P. Zheng, A. J. Li and F. L. Wang. 1995. A study on the callus induction and plant regeneration of different sorghum explants. Acta Agriculturae Boreali Sinica 10:60-63.
13 Shyamala, D. and P. Devi. 2003. Efficient regeneration of sorghum, Sorghum bicolor (L.) Moench, from shoot-tip explant. Indian J. Exp. Biol. 41:1482-1486.
14 Baskaran, P. and N. Jayabalan. 2005. An efficient plant regeneration system for Sorghum bicolor a valuable major cereal crop. J. Plant Biotech. 7:247-257.
15 Bhat, S. and M. S. Kuruvinashetti. 1995. Callus induction and plant regeneration from immature embryos of maintainer line (B) of kharif sorghum. J. Maharashtra Agricult. University 20:159.
16 Yohannes, T., L. Sagi, R. Swennen and M. Jacobs. 2003. Optimization of transformation conditions and production of transgenic sorghum (Sorghum bicolor) via microparticle bombardment. Plant Cell Tiss. Org. Cult. 75:1-18.   DOI   ScienceOn
17 Arlene, H., S. Shirley, D. Ismail, F. Mike and C. Tom. 2006. Rapid and reproducible Agrobacterium-mediated transformation of sorghum. Plant Cell Rep. 25:284-791.
18 Zhao, Z., C. Tishu, T. Laura, M. Mike, W. Ning, P. Hong, R. Marjorie, S. Sheryl, H. Dave, S. Jon and P. Dortie. 2000. Agrobacterium-mediated sorghum transformation. Plant Mol. Biol. 44:789-798.   DOI   ScienceOn
19 Patil, V. M. and M. S. Kuruvinashetti. 1998. Plant regeneration from leaf sheath cultures of some rabi sorghum cultivars. South African J. Bot. 64:217-219.   DOI
20 Rao, K. V., P. Suprasanna and G. M. Reddy. 1990. Somatic embryogenesis from immature glume calli of Zea mays L. Indian J. Exp. Biol. 28:531-533.
21 Vasil, V. and I. K. Vasil. 1981. Somatic embryogenesis and plant regeneration from tissue cultures of Pennisetum americanum, and P. americanum x P. purpureum hybrid. Ameri. J. Bot. 68:864-872.   DOI   ScienceOn
22 Maheswari, M., N. Lakshmi, S. K. Yadav, Y. Varalaxmi, A. V. Lakshmi, M. Vanaja and B. Venkateswarlu. 2006. Efficient plant regeneration from shoot apices of sorghum. Plant Biol. 50:741-744.   DOI   ScienceOn
23 Nguyen, Tuong-Van, T. T. Thanh, C. Martine and A. Geert. 2007. Agrobacterium-mediated transformation of sorghum (Sorghum bicolor (L.) Moench) using an improved in vitro regeneration system. Plant Cell Tiss. Org. Cult. 91:155-164.   DOI   ScienceOn
24 Oldach, K. H., A. Morgenstern, S. Rother, M. Girgi, O. M. Kennedy and H. Lorz. 2001. Efficient in vitro plant regeneration from immature zygotic embryos of pearl millet [Pennistum Glaucum (L.)R. Br.] and Sorghum bicolor (L.) Moench. Plant Cell Rep. 20:416-421.   DOI   ScienceOn
25 O'Kennedy, M. M., A. Grootboom and P. R. Shewry. 2006. Harnessing sorghum and millet biotechnology for food and health. J. Cereal Sci. 44:224-235.   DOI   ScienceOn
26 Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473-497.   DOI
27 Nahadi, S. and J. M. J. de-Wet. 1995. In vitro regeneration of Sorghum bicolor lines from shoot apexes. Inter. Sorghum and Millets Newsletter 36:88-90.