Browse > Article
http://dx.doi.org/10.5352/JLS.2018.28.10.1220

Histological Comparative Study of Rabbit Maxillary Sinus Augmentation with Bio-Oss and β-TCP  

Moon, Yong-Suk (Department of Anatomy, College of Medicine, Catholic University of Daegu)
Publication Information
Journal of Life Science / v.28, no.10, 2018 , pp. 1220-1232 More about this Journal
Abstract
The purpose of this animal study was to evaluate, by histological analysis, bone regeneration in rabbit maxillary sinuses with an anorganic bovine graft (Bio-Oss) and a ${\beta}-tricalcium$ phosphate (${\beta}-TCP$) grafting. Bilateral sinus augmentation procedures were performed in 12 adult male rabbits. Rectangular replaceable bony windows were made with a piezoelectric thin saw insert. In the Bio-Oss group, Bio-Oss was grafted and in the ${\beta}-TCP$ group, ${\beta}-TCP$ was grafted and covered by replaceable bony windows. The animals were sacrificed at 2, 4, and 8 weeks after the surgical procedure. The augmented sinuses were evaluated by histomorphometric analysis using hematoxylin-eosin, Masson trichrome, and tartrate-resistant acid phosphatase stains and also by immunohistochemical analysis of proliferating cell nuclear antigen (PCNA), type I collagen, and osteocalcin content. Histologically, new bone formation was found on the surface of Bio-Oss and ${\beta}-TCP$ particles from 2 weeks and continued to 8 weeks. Significant higher new bone formation was revealed in the ${\beta}-TCP$ group than in the Bio-Oss group at 8 weeks. The amount of graft materials was significantly decreased in the ${\beta}-TCP$ group and the number of osteoclasts was significantly increased in the ${\beta}-TCP$ group from 4 to 8 weeks. Immunoreactivity to PCNA was reduced at 8 weeks. The expression of type I collagen was significantly increased in the ${\beta}-TCP$ group at 2 weeks, but was significantly increased in the Bio-Oss group at 8 weeks. Immunoreactivity to osteocalcin was increased from 2 to 8 weeks. These histological results can help in the selection of graft materials for implants. Both Bio-Oss and ${\beta}-TCP$ are proven graft materials, however, these results indicate that ${\beta}-TCP$ showed better bone regeneration results in rabbit maxillary sinus augmentation.
Keywords
Bio-Oss; ${\beta}-TCP$; immunohistochemistry; maxillary sinus augmentation; new bone formation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Ayranci, F., Gungormus, M., Omezli, M. M. and Gundogdu, B. 2015. The effect of alendronate on various graft materials used in maxillary sinus augmentation: A rabbit study. Iran. Red. Crescent Med. J. 17, e33569.
2 Baron, R., Neff, L., Tran Van, P., Nefussi, J. R. and Vignery, A. 1986. Kinetic and cytochemical identification of osteoclast precursors and their differentiation into multinucleated osteoclasts. Am. J. Pathol. 122, 363-378.
3 Boyne, P. J. and James, R. A. 1980. Grafting of the maxillary sinus floor with autogenous marrow and bone. J. Oral Maxillofac. Surg. 38, 613-616.
4 Desbois, C. and Karsenty, G. 1995. Osteocalcin cluster. Implications for functional studies. J. Cell Biochem. 57, 379-383.
5 Garcia, R. L., Coltrera, M. D. and Gown, A. M. 1989. Analysis of proliferative grade using anti-PCNA/cyclin monoclonal antibodies in fixed, embedded tissues. Comparison with flow cytometric analysis. Am. J. Pathol. 134, 733-739.
6 Han, C. P., Kok, L. F., Wang, P. H., Wu, T. S., Tyan, Y. S., Cheng, Y. W., Lee, M. Y. and Yang, S. F. 2009. Scoring of p16(INK4a) immunohistochemistry based on independent nuclear staining alone can sufficiently distinguish between endocervical and endometrial adenocarcinomas in a tissue microarray study. Mod. Pathol. 22, 797-806.   DOI
7 Jensen, S. S., Aaboe, M., Pinholt, E. M., Hjorting-Hansen, E., Melsen, F. and Ruyter, I. E. 1996. Tissue reaction and material characteristics of four bone substitutes. Int. J. Oral Maxillofac. Implants 11, 55-66.
8 Henriksen, K. L., Rasmussen, B. B., Lykkesfeldt, A. E., Moller, S., Ejlertsen, B. and Mouridsen, H. T. 2007. Semi-quantitative scoring of potentially predictive markers for endocrine treatment of breast cancer: a comparison between whole sections and tissue microarrays. J. Clin. Pathol. 60, 397-404.
9 Hu, Z., Peel, S. A., Ho, S. K., Sándor, G. K., Su, Y. and Clokie, C. M. 2010. The expression of bone matrix proteins induced by different bioimplants in a rabbit sinus lift model. J. Biomed. Mater. Res. A. 95, 1048-1054.
10 Jensen, S. S., Broggini, N., Hjorting-Hansen, E., Schenk, R. and Buser, D. 2006. Bone healing and graft resorption of autograft, anorganic bovine bone and beta-TCP. A histologic and histomorphometric study in the mandibles of minipigs. Clin. Oral Implants Res. 17, 237-243.
11 Joo, M. J., Cha, J. K., Lim, H. C., Choi, S. H. and Jung, U. W. 2017. Sinus augmentation using rhBMP-2-loaded synthetic bone substitute with simultaneous implant placement in rabbits. J. Periodontal. Implant Sci. 47, 86-95.
12 Kumlien, J. and Schiratzki, H. 1985. The vascular arrangement of the sinus mucosa. A study in rabbits. Acta Otolaryngol. 99, 122-132.
13 Lu, J., Descamps, M., Dejou, J., Koubi, G., Hardouin, P., Lemaitre, J. and Proust, J. P. 2002. The biodegradation mechanism of calcium phosphate biomaterials in bone. J. Biomed. Mater. Res. 63, 408-412.   DOI
14 Marks, S. C. Jr. and Popoff, S. N. 1988. Bone cell biology: The regulation of development, structure, and function in the skeleton. Am. J. Anat. 183, 41-44.
15 Park, J. W., Jang, J. H., Bae, S. R., An, C. H. and Suh, J. Y. 2009. Bone formation with various bone graft substitutes in critical-sized rat calvarial defect. Clin. Oral Implants Res. 20, 372-378.   DOI
16 Maurizio, P. and Gian, A. F. 1999. Bone reactions to anorganic bovine bone (Bio-Oss) used in sinus augmentation procedures: A histologic long-term report of 20 cases in humans. Int. J. Oral Maxillofac. Implants 14, 835-840.
17 Minkin, C. 1982. Bone acid phosphatase: Tartrate-resistant acid phosphatase as a marker of osteoclast function. Calcif. Tissue Int. 34, 285-290.
18 Moskow, B. S. and Lubarr, A. 1983. Histological assessment of human periodontal defect after durapatite ceramic implant. Report of a case. J. Periodontol. 54, 455-462.   DOI
19 Ogose, A., Hotta, T., Hatano, H., Kawashima, H., Tokunaqa, K., Endo, N. and Umezu, H. 2002. Histological examination of ${\beta}$-TCP graft in human femur. J. Biomed. Mater. Res. 63, 601-604.   DOI
20 Ozyuvaci, H., Bilgic, B. and Firati, E. 2003. Radiologic and histomorphometric evaluation of maxillary sinus grafting with alloplastic graft materials. J. Periodontol. 74, 909-915.   DOI
21 Park, S. H., Choi, H., Lee, S. B., Zhang, C., Otgonbold, J., Cho, J. G. and Han, J. S. 2015. A rabbit maxillary sinus model with simultaneous customized-implant placement: Comparative microscopic analysis for the evaluation of surface-treated implants. Microse. Res. Tech. 78, 697-706.
22 Prelich, G., Tan, C. K., Kostura, M., Mathews, M. B., So, A. G., Downey, K. M. and Stillman, B. 1987. Functional identity of proliferating cell nuclear antigen and a DNA polymerase-delta auxiliary protein. Nature 326, 517-520.   DOI
23 Szabo', G., Suba, Z., Hraba'k, K., Baraba's, J. and Ne'meth, Z. 2001. Autogenous bone versus beta-tricalcium phosphate graft alone for bilateral sinus elevations (2-and 3-dimensional computed tomographic, histologic, and histomorp hometric evaluations): preliminary results. Int. J. Oral Maxillofac. Implants 16, 681-692.
24 Saffar, J. L., Colombier, M. L. and Detienville, R. 1990. Bone formation in tricalcium phosphate-filled periodontal intrabony lesions. Histological observations in humans. J. Periodontol. 61, 209-216.   DOI
25 Saito, M., Shimizu, H., Beppu, M. and Takagi, M. 2000. The role of ${\beta}$-tricalcium phosphate in vasculized periosteum. J. Orthop. Sci. 5, 275-282.   DOI
26 Sato, M., Yasui, N., Nakase, T., Kawahata, H., Sugimoto, M., Hirota, S., Kitamura, Y., Nomura, S. and Ochi, T. 1998. Expression of bone matrix proteins mRNA during distraction osteogenesis. J. Bone Miner. Res. 13, 1221-1231.
27 Schlegel, K. A., Fichtner, G., Schultze-Mosgau, S. and Wiltfang, J. 2003. Histologic findings in sinus augmentation with autogenous bone chips versus a bovine bone substitute. Int. J. Oral Maxillofac. Implants 18, 53-58.
28 Smiler, D. G., Johnson, P. W., Lozada, J. L. and Misch, C. 1992. Sinus lift grafts and endosseous implants: Treatment of the atrophic posterior maxilla. Dent. Clin. North Am. 36, 151-186.
29 Tadic, D. and Epple, M. 2004. A thorough physicochemical characterisation of 14 calcium phosphate-based bone substitution materials in comparison to natural bone. Biomaterials 25, 987-994.   DOI
30 Tadjoedin, E. S., de Lange, G. L., Bronckers, A. L., Lyaruu, D. M. and Burger, E. H. 2003. Deproteinized cancellous bovine bone (Bio-Oss) as bone substitute for sinus floor elevation. A retrospective, histomorphomeritical study of five cases. J. Clin. Periodontol. 30, 261-270.   DOI
31 Winn, S. R., Uludag, H. and Hollinger, J. O. 1999. Carrier systems for bone morphogenetic proteins. Clin. Orthop. Relat. Res. 367 Suppl, S95-106.
32 Toshihisa, K. 1998. Cbfal/Pebp2aA, A key factor for osteoblast differentiation. Cell Technol. 17, 344-348.
33 van den Bergh, J. P., ten Bruggenkate, C. M., Krekeler, G. and Tuinzing, D. B. 1998. Sinus floor elevation and grafting with autogenous iliac crest bone. Clin. Oral Implants Res. 9, 429-435.   DOI
34 Watanabe, K., Niimi, A and Ueda, M. 1999. Autogenous bone graft in the rabbit maxillary sinus. Oral Surg. Oral Med. Oral Radiol. Endod. 88, 26-32.   DOI
35 Xu, H., Shimizu, Y. and Ooya, K. 2005. Histomorphometric study of the stability of newly formed bone after elevation of the floor of the maxillary sinus. Br. J. Oral Maxillofac. Surg. 43, 493-499.   DOI
36 Yasui, N., Sato, M., Ochi, T., Kimura, T., Kawahata, H., Kitamura, Y. and Nomura, S. 1997. Three modes of ossification during distraction osteogenesis in the rat. J. Bone Joint Surg. Br. 79, 824-830.   DOI
37 Yildirim, M., Spiekermann, H., Biesterfeld, S. and Edelhoff, D. 2000. Maxillary sinus augmentation using xenogenic bone substitute material Bio-Oss in combination with venous blood. A histologic and histomorphometric study in humans. Clin. Oral Implants Res. 11, 217-229.   DOI