• Title/Summary/Keyword: Bio-photocatalyst

Search Result 16, Processing Time 0.029 seconds

Development of a Hydroponic Recycle System using the Visible Light-reactive Titanium Dioxide Photocatalyst for Sterilization of Nutrient Solution(I) - Determination of factors - (가시광 감응형 광촉매에 의한 수경재배용 배양액의 재이용 살균시스템 개발(I) - 광촉매 필터 요인시험 -)

  • Chung, Sung-Won;Ha, Yu-Shin;Lee, Jong-Won;Park, Jong-Min;Kwon, Soon-Hong;Lee, Ki-Myung
    • Journal of Biosystems Engineering
    • /
    • v.35 no.6
    • /
    • pp.420-425
    • /
    • 2010
  • We produced a basic system of sterilization of nutrient solution based on the characteristics of coated filter with the visible light-reactive titanium oxide photocatalyst according to the findings of the first stage. We developed a model system with a proper number and arrangement of filter elements, the visible light-reactive titanium oxide photocatalyst according to findings from the basic performance test. Main results of this study were as followers; The ceramic filters showed the best performance of sterilization of nutrient solution. The visible light-reactive titanium oxide photocatalyst sterilized more effectively the nutrient solution under the sunlight than UV light. The sterilization performance by passing repeatedly through a few filter was more efficient than that by treating simultaneously with a large number of filters. The filter with 15ppi in pore size, 20 mm in thickness, and 3 layers in titanium oxide coating was desirable in the intensity and sterilization performance.

Enhancement of NOx photo-oxidation by Fe-doped TiO2 nanoparticles

  • Martinez-Oviedo, Adriana;Ray, Schindra Kumar;Gyawali, Gobinda;Rodriguez-Gonzalez, Vicente;Lee, Soo Wohn
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.3
    • /
    • pp.222-230
    • /
    • 2019
  • Microwave hydrothermal-assisted sol-gel method was employed to synthesize the Fe doped TiO2 photocatalyst. The morphological analysis suggests anatase phase nanoparticles of ~20 nm with an SBET area of 283.99 ㎡/g. The doping of Fe ions in TiO2 created oxygen vacancies and Ti3+ species as revealed through the XPS analysis. The reduction of the band gap (3.1 to 2.8 eV) is occurred by doping effect. The as-prepared photocatalyst was applied for removal of NOx under solar light irradiation. The doping of Fe in TiO2 facilitates 75 % of NOx oxidation efficiency which is more than two-fold enhancement than the TiO2 photocatalyst. The possible reason of enhancement is associated with high surface area, oxygen vacancy, and reduction of the band gap. Also, the low production of toxic intermediates, NO2 gas, is further confirmed by Combustion Ion Chromatography. The mechanism related NOx oxidation by the doped photocatalyst is explained in this study.

Hydrogen Production by Water Splitting with Solar Energy (태양에너지를 이용한 수소제조)

  • Lee Tai-Kyu
    • Journal of Energy Engineering
    • /
    • v.15 no.2 s.46
    • /
    • pp.96-106
    • /
    • 2006
  • Among several different hydrogen production technologies, solar hydrogen system for water splitting is the only clean and sustainable energy supplier. Hydrogen production by water-splitting utilizing solar energy has attracted considerable interest since the pioneering work of Honda and Fujishima in 1979, who discovered that water can be photo-electrochemically decomposed into hydrogen and oxygen using a semiconductor ($TiO_2$) electrode under UV irradiation. Most efforts to utilize solar ray lead to explore visible responding photocatalysts, PEC cells and other fusion technology like bio-photocatalytic conversion. In this paper, photon utilization technologies for water splitting have been briefly reviewed except solar thermal utilization technology.

A Study on the Characteristics of Manufactured Photocatalyst Using maleinized Acrylated Epoxidized Soybean Oil for the Dye-sensitized Solar Cell (염료감응 태양전지를 위한 Maleinized Acrylated Epoxidized Soybean Oil를 이용하여 제조된 광촉매의 특성에 관한 연구)

  • Park, Ki-Min;Kim, Tae-Young;Kim, Jeong-Guk;Cho, Sung-Yong
    • Korean Chemical Engineering Research
    • /
    • v.49 no.3
    • /
    • pp.381-386
    • /
    • 2011
  • Chemically functionalized plant oils, namely maleinized acrylated epoxidized soybean oil(MAESO), were used as a new bio based binders for photoelectrodes of dye-sensitized solar cells. The photocatalysts were characterized by field emission scanning electron microscope(FE-SEM), energy dispersive X-ray spectrometer(EDS), X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS) and nitrogen adsorption analyses. The surface area and number of appropriate pores were increased in the $TiO_{2}$ particles prepared using the plant oil binders in comparison with the P-25 photocatalyst, due to the larger number of functionalities. The functional groups of OH on the surface of the $TiO_{2}$ particles increased from 9.9% to 16.62%.

The Deodorization and Antibacterial Activities of PLA Films Embedded with TiO2 Nanoparticles (TiO2 나노입자를 함유한 PLA 필름의 탈취성과 항균성)

  • Koo, Gwang-Hoe;Jang, Jin-Ho
    • Textile Coloration and Finishing
    • /
    • v.20 no.6
    • /
    • pp.1-7
    • /
    • 2008
  • The effects of $TiO_2$ contents and UV irradiation treatment on the surface properties of PLA films embedded with $TiO_2$ nanoparticle were investigated. Whereas UV irradiation decreased reflectance of the treated PLA films proportionally with increasing UV energy, the reflectance of PLA/$TiO_2$ films increased with increasing UV energy. The UV irradiation treatment caused PLA/$TiO_2$ blend films more polar as indicated in the generation of new carbonyl group and decrease in zeta potentials, which was more pronounced with the introduction of $TiO_2$. Upon UV irradiation, $TiO_2$ particles appeared on the film surface as observed in SEM images. The PLA/$TiO_2$ blend films showed photocatalytic properties such as photobleaching of methylene blue, deodorization of ammonia and antimicrobial activity in comparison with pure PLA films.

Photocatalytic Activity of Electrospun PAN/TiO2 Nanofibers in Dye Photodecomposition

  • Ji, Byung Chul;Bae, Sang Su;Rabbani, Mohammad Mahbub;Yeum, Jeong Hyun
    • Textile Coloration and Finishing
    • /
    • v.25 no.2
    • /
    • pp.94-101
    • /
    • 2013
  • Poly(acrylonitrile) (PAN) nanofibers containing different amounts of titanium dioxide ($TiO_2$) have been prepared by electrospinning technique. Photocatalytic activity of these electrospun PAN/$TiO_2$ nanofibers and the effect of $TiO_2$ content on the photocatalytic efficiency of PAN/$TiO_2$ nanofibers have been evaluated by monitoring the photodecomposition of fluorescein dye, rhodamine B and methylene blue under UV irradiation with respect to irradiation time. Moreover, the effect of hydrogen peroxide ($H_2O_2$) on the photocatalytic behavior of PAN/$TiO_2$ nanofibers has also been investigated. The results showed that PAN/$TiO_2$ nanofibers are effective photocatalyst and their photocatalytic efficiency increases with the increase of $TiO_2$ content in the PAN/$TiO_2$ nanofibers. It is also observed that the presence of $H_2O_2$ significantly enhances the photocatalytic ability of PAN/$TiO_2$ nanofibers. The morphology and the photocatalytic behavior of the PAN/$TiO_2$ nanofibers containing different amounts of $TiO_2$ nanoparticles have been investigated by field-emission scanning electron microscopy (FE-SEM) and UV/Visible spectroscopy, respectively.

Effect of Surface Treatment of CdS-TiO2 Composite Photocatalysts with Film Type on Hydrogen Production (수소제조에 관한 박막형 CdS-TiO2 복합 광촉매계의 표면처리 효과)

  • Jang, Jum-Suk;So, Won-Wook;Kim, Kwang-Je;Moon, Sang-Jin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.1
    • /
    • pp.34-41
    • /
    • 2002
  • CdS and $TiO_2$ nanoparticles were made by the precipitation method and sol-gel method, respectively, and they were mixed mechanically and then treated with the hydrothermal processing. CdS-$TiO_2$ composite particulate films were thus prepared by casting CdS-$TiO_2$ mixed sol onto $SnO_2$ conducting glass and a subsequent heat-treatment at $400^{\circ}C$. Again, the physico-chemical and photoelectrochemical properties of these films were controlled by the surface treatment with $TiCl_4$ aqueous solution. The photocurrents and the hydrogen production rates measured under the present experimental conditions varied in the range of $3.5{\sim}4.5mA/cm^2$ and $0.3{\sim}1.8cc/cm^2$-hr, respectively, and showed the maximum values at the $CdS/[CdS+TiO_2]$ mole ratio of 0.2. Also, the surface treatment with $TiCl_4$ aqueous solution caused a considerable improvement in the photocatalytic activity, Probably as a result of close contacts between the primary particles by the etching effect of $TiCl_4$ It was found that the photoelectrochemical performance of these particulate films could be effectively enhanced by this approach.

Photoelectrochemical and Hydrogen Production Characteristics of CdS-TiO2 Nanocomposite Photocatalysts Synthesized in Organic Solvent (유기용매상에서 제조된 수소제조용 CdS-TiO2 나노복합 광촉매의 특성 연구)

  • Jang, Jum-Suk;So, Won-Wook;Kim, Kwang-Je;Moon, Sang-Jin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.3
    • /
    • pp.224-232
    • /
    • 2002
  • CdS-$TiO_2$ nano-composite sol was prepared by the sol-gel method in organic solvents at room temperature and further hydrothermal treatment at various temperatures to control the physical properties of the primary particles. Again, CdS-$TiO_2$ composite particulate films were made by casting CdS-$TiO_2$ sols onto $F:SnO_2$ conducting glass and then heat-treatment at $400^{\circ}C$. Physical properties of these 61ms were further controlled by the surface treatment with $TiCl_4$, aqueous solution. The photo currents and hydrogen production rates measured under the experimental conditions varied according to the $CdS/[CdS+TiO_2]$ mole ratio and the mixed-sol preparation method. For $CdS-TiO_2$ composite sols prepared in IPA, CdS particles were homogeneously surrounded by $TiO_2$ particles. Also, the surface treatment with $TiCl_4$ aqueous solution caused a considerable improvement in the photocatalytic activity, probably as a result of close contacts between the primary particles by the etching effect of $TiCl_4$. It was found that the photoelectrochemical performance of these particulate films could be effectively enhanced by this approach.

Preparation and Photochemical Properties of Zn0.95Mn0.05 (Zn0.95Mn0.05의 제조 및 광화학적 특성)

  • Jung, Dong-woon
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.5
    • /
    • pp.560-564
    • /
    • 2009
  • ZnO and Mn-substituted $Zn_{0.95}Mn_{0.05}O$ were synthesized by using precipitation method. $Zn_{0.95}Mn_{0.05}O$ compound absorbed UV light as well as hole range of visible light ($400{\sim}800$ nm). Results obtained revealed that $Zn_{0.95}Mn_{0.05}O$ showed higher activity than P-25 for visible-photocatalytic degradation of 1,4- dichlorobenzene.

Enhanced Photocatalytic Activity of 3,4,9,10-Perylenetetracarboxylic Diimide Modified Titanium Dioxide Under Visible Light Irradiation

  • Kim, Ji-Won;Kim, Hee-Sung;Yu, Kook-Hyun;Fujishima, Akira;Kim, Young-Soon
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2849-2853
    • /
    • 2010
  • A method to improve the photocatalytic activity of titanium dioxide by modification with a sensitizer and a metal oxide is proposed. To achieve this goal, we used metal oxides as dopants. In particular, $CaWO_4$ and $Gd_2O_2S$:Tb were used because their 2.6 eV and 2.2 eV band gap energy and optical properties have a large positive effect on photocatalysis. The improvement in the photocatalytic activity of $TiO_2$ modified with $Gd_2O_2S$:Tb under ultraviolet light irradiation is described in a previous study. The present work focuses on the sensitization of metal oxide-modified $TiO_2$. Having observed the ultraviolet-visible absorption spectra of 3,4,9,10-Perylenetetracarboxylic diimide in the wide visible-light region from 400 nm to 650 nm and the broad peaks in its photoluminescence spectra at 695 nm and 717 nm, we decided to use this perylene dye to sensitize modified $TiO_2$ to enhance its activity as a visible-light harvesting photocatalyst. We also explored the positive effects thin-film surface changes stemming from ultraviolet pre-treatment have on photocatalytic activity. Finally, we subjected several metal oxide-modified $TiO_2$ products sensitized by the perylene dye to ultraviolet pre-treatment, obtaining the most active photocatalysts.