Browse > Article

Photoelectrochemical and Hydrogen Production Characteristics of CdS-TiO2 Nanocomposite Photocatalysts Synthesized in Organic Solvent  

Jang, Jum-Suk (Fine & Bio-chemical Process R&D Center Korea Research Institute of Chemical Technology)
So, Won-Wook (Fine & Bio-chemical Process R&D Center Korea Research Institute of Chemical Technology)
Kim, Kwang-Je (Fine & Bio-chemical Process R&D Center Korea Research Institute of Chemical Technology)
Moon, Sang-Jin (Fine & Bio-chemical Process R&D Center Korea Research Institute of Chemical Technology)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.13, no.3, 2002 , pp. 224-232 More about this Journal
Abstract
CdS-$TiO_2$ nano-composite sol was prepared by the sol-gel method in organic solvents at room temperature and further hydrothermal treatment at various temperatures to control the physical properties of the primary particles. Again, CdS-$TiO_2$ composite particulate films were made by casting CdS-$TiO_2$ sols onto $F:SnO_2$ conducting glass and then heat-treatment at $400^{\circ}C$. Physical properties of these 61ms were further controlled by the surface treatment with $TiCl_4$, aqueous solution. The photo currents and hydrogen production rates measured under the experimental conditions varied according to the $CdS/[CdS+TiO_2]$ mole ratio and the mixed-sol preparation method. For $CdS-TiO_2$ composite sols prepared in IPA, CdS particles were homogeneously surrounded by $TiO_2$ particles. Also, the surface treatment with $TiCl_4$ aqueous solution caused a considerable improvement in the photocatalytic activity, probably as a result of close contacts between the primary particles by the etching effect of $TiCl_4$. It was found that the photoelectrochemical performance of these particulate films could be effectively enhanced by this approach.
Keywords
Nano-composite; Photocatalyst; $TiO_2$; CdS; Hydrogen production;
Citations & Related Records
연도 인용수 순위
  • Reference
1 E. Borgarello, K. Kalyanasundaram and M. Gratzel : Chim. Acta, 65, 1982, pp. 243   DOI
2 P.A. Kohl, S.N. Frank, and A. J. Bard : Journal of The Electrochemical Society,124, 1977, pp. 225   DOI   ScienceOn
3 H. Takahashi, et al. : J. Alloys & compounds, 285, 1999, pp. 77   DOI   ScienceOn
4 J.S. Jang, W.W. So, K.J. Kim, S.J. Moon : Trans. the Korean Hydrogen Energy Society 13 (1), 2002, pp. 34
5 P.H.M. Dekorte, L.G.J. DeHaart, R.U.E. Tram and G. Blasse : Solid State Commun., 38, 1981, pp. 213   DOI   ScienceOn
6 K. Gurunathan and P. Maruthamuthu : J. Hydrogen Energy, 20(4), 1995, pp. 287   DOI   ScienceOn
7 A. Monnier and J. Augustynski : ibid., 127, 1980, pp. 1576   DOI   ScienceOn
8 A. Kudo, H. Kato, S. Nakagawa : J. Phys Chem. B 104, 2000, pp. 571   DOI
9 M. Khono, et al. : J. Chem. Soc. Faraday Trans., 94(1), 1998, pp. 89   DOI   ScienceOn
10 H.G. Kim, D.W Hwang, J.D. Kim, Y.G. Kim, J.S. Lee : Chem. Commun., 1999, pp.1077
11 J.S. Jang, H.Y. Chang, W.W. So, Y.W. Rhee, S.J. Moon : J. the Korean Hydrogen Energy Society 11(3), 2000, pp. 119
12 M. Tomkiewicz and J.M. Woodall : J. Electrochem. Soc., 124, 1977, pp. 1436   DOI
13 M. Barbeni : Int. J. Hydrogen Energy, 10, 1985, pp. 249   DOI   ScienceOn
14 A. K. Ghosh and H. P. Maruska : Journal of The Electrochemical Society, 124, 1977, pp. 1516   DOI   ScienceOn
15 N. Serpone, E. Borgarello and M. Gratzel : J. Chem. Soc. Chem., Commun., 1984, pp.342
16 D.W Hwang, H.G. Kim, J.D. Kim, K.Y. Cha, Y.G. Kim, J.S. Lee : J. Catalysis, 2000, pp. 40
17 S.S. Kim, J.S. Jang, W.W. So, K.J. Kim, S.J. Moon : J. the Korean Hydrogen Energy Society 11 (4), 2000, pp. 161