Enhancement of NOx photo-oxidation by Fe-doped TiO2 nanoparticles

  • Martinez-Oviedo, Adriana (Department of Environmental and Bio-Chemical Engineering, Sun Moon University) ;
  • Ray, Schindra Kumar (Department of Environmental and Bio-Chemical Engineering, Sun Moon University) ;
  • Gyawali, Gobinda (Division of Basic Engineering, Sun Moon University) ;
  • Rodriguez-Gonzalez, Vicente (Division de Materiales Avanzados, Instituto Potosino de Investigacion Cientifica y Tecnologica) ;
  • Lee, Soo Wohn (Department of Environmental and Bio-Chemical Engineering, Sun Moon University)
  • Received : 2019.01.11
  • Accepted : 2019.06.03
  • Published : 2019.06.01

Abstract

Microwave hydrothermal-assisted sol-gel method was employed to synthesize the Fe doped TiO2 photocatalyst. The morphological analysis suggests anatase phase nanoparticles of ~20 nm with an SBET area of 283.99 ㎡/g. The doping of Fe ions in TiO2 created oxygen vacancies and Ti3+ species as revealed through the XPS analysis. The reduction of the band gap (3.1 to 2.8 eV) is occurred by doping effect. The as-prepared photocatalyst was applied for removal of NOx under solar light irradiation. The doping of Fe in TiO2 facilitates 75 % of NOx oxidation efficiency which is more than two-fold enhancement than the TiO2 photocatalyst. The possible reason of enhancement is associated with high surface area, oxygen vacancy, and reduction of the band gap. Also, the low production of toxic intermediates, NO2 gas, is further confirmed by Combustion Ion Chromatography. The mechanism related NOx oxidation by the doped photocatalyst is explained in this study.

Keywords

References

  1. Environmental Protection Agency (EPA), Nitrogen oxides (NOx), why and how they are controlled, Epa-456/F-99-006R. (1999) 48.
  2. J. Lasek, Y.-H. Yu, J.C.S. Wu, Removal of NOx by photocatalytic processes, J. Photochem. Photobiol. C Photochem. Rev. 14 (2013) 29-52. https://doi.org/10.1016/j.jphotochemrev.2012.08.002
  3. J.J. Kaczur, Oxidation chemistry of chloric acid in NOx/ SOx and air toxic metal removal from gas streams, Environ. Prog. 15 (1996) 245-254. https://doi.org/10.1002/ep.670150414
  4. U.S. Environmental Protection Agency, Nitrogen Oxides Emissions, (2014) 23.
  5. M.S. Solanki, S. Benjamin, Photocatalysis, Adv. Oxid. Process. Waste Water Treat. (2018) 135-175.
  6. D. Ravelli, D. Dondi, M. Fagnoni, A. Albini, Photocatalysis. A multi-faceted concept for green chemistry, Chem. Soc. Rev. 38 (2009) 1999-2011. https://doi.org/10.1039/b714786b
  7. T. Luttrell, S. Halpegamage, J. Tao, A. Kramer, E. Sutter, M. Batzill, Why is anatase a better photocatalyst than rutile? - Model studies on epitaxial TiO2 films, Sci. Rep. 4 (2015) 4043. https://doi.org/10.1038/srep04043
  8. A. Fujishima, T.N. Rao, D.A. Tryk, Titanium dioxide photocatalysis, J. Photochem. Photobiol. C Photochem. Rev. 1 (2000) 1-21. https://doi.org/10.1016/S1389-5567(00)00002-2
  9. L.M. S. George, S. Pokhrel, Z. Ji, B. L. Henderson, T. Xia, L. J. Li, J. I. Zink, A. E. Nel, Role of Fe doping in tuning the band gap energy of titanium dioxide for studying the light activated cytotoxicity, J. Am. Chem. Soc. 133 (2011) 11270-11278. https://doi.org/10.1021/ja202836s
  10. R. Jaiswal, J. Bharambe, N. Patel, A. Dashora, D.C. Kothari, A. Miotello, Copper and Nitrogen co-doped TiO2 photocatalyst with enhanced optical absorption and catalytic activity, Appl. Catal. B Environ. 168-169 (2015) 333-341. https://doi.org/10.1016/j.apcatb.2014.12.053
  11. M.B. Suwarnkar, R.S. Dhabbe, A.N. Kadam, K.M. Garadkar, Enhanced photocatalytic activity of Ag doped TiO2 nanoparticles synthesized by a microwave assisted method, Ceram. Int. 40 (2014) 5489-5496. https://doi.org/10.1016/j.ceramint.2013.10.137
  12. Y.-H. Peng, G.-F. Huang, W.-Q. Huang, Visible-light absorption and photocatalytic activity of Cr-doped TiO2 nanocrystal films, Adv. Powder Technol. 23 (2012) 8-12. https://doi.org/10.1016/j.apt.2010.11.006
  13. Q.R. Deng, X.H. Xia, M.L. Guo, Y. Gao, G. Shao, Mn-doped TiO2 nanopowders with remarkable visible light photocatalytic activity, Mater. Lett. 65 (2011) 2051-2054. https://doi.org/10.1016/j.matlet.2011.04.010
  14. I. Ganesh, P.P. Kumar, I. Annapoorna, J.M. Sumliner, M. Ramakrishna, N.Y. Hebalkar, G. Padmanabham, G. Sundararajan, Preparation and characterization of Cu-doped TiO2 materials for electrochemical, photoelectrochemical, and photocatalytic applications, Appl. Surf. Sci. 293 (2014) 229-247. https://doi.org/10.1016/j.apsusc.2013.12.140
  15. R. Ribeiro, S. de Lazaro, C. de Oliveira, Band-Gap Engineering for Photocatalytic Applications: Anionic and Cationic Doping of TiO2 Anatase, Curr. Phys. Chem. 6 (2016) 22-27. https://doi.org/10.2174/187794680601160324113805
  16. Y. Zhang, Q. Li, Synthesis and characterization of Fe-doped TiO2 films by electrophoretic method and its photocatalytic activity toward methyl orange, Solid State Sci. 16 (2013) 16-20. https://doi.org/10.1016/j.solidstatesciences.2012.11.012
  17. N.H. Hao, G. Gyawali, S.W. Lee, Ceramic Processing Research Rapid synthesis of TiO2 nanotubes via microwave-assisted hydrothermal method, J. Ceram Process Res. 18 (2017) 36-40.
  18. S. Narakaew, The nano-TiO2 synthesis using ultrasonic assisted sol-gel method and its photocatalytic degradation of methylene blue, J. Ceram Process Res. 17 (2016) 409-413.
  19. A. Monshi, M.R. Foroughi, M.R. Monshi, Modified Scherrer Equation to Estimate More Accurately Nano-Crystallite Size Using XRD, World J. Nano Sci. Eng. 02 (2012) 154-160. https://doi.org/10.4236/wjnse.2012.23020
  20. M. Hinojosa-Reyes, V. Rodriguez-Gonzalez, R. Zanella, Gold nanoparticles supported on TiO2-Ni as catalysts for hydrogen purification via water-gas shift reaction, RSC Adv. 4 (2014) 4308-4316. https://doi.org/10.1039/C3RA45764H
  21. Y. Yang, Y. Yu, J. Wang, W. Zheng, Y. Cao, Doping and transformation mechanisms of Fe3+ ions in Fe-doped TiO2, CrystEngComm. 19 (2017) 1100-1105. https://doi.org/10.1039/C6CE02523D
  22. B.I. Kidyarov, N.D. Dandaron, Kinetics of non-stationary nucleation in solutions, J. Cryst. Growth. 52 (1981) 812-815. https://doi.org/10.1016/0022-0248(81)90380-8
  23. A. Chianese, F. Di Berardino, A.G. Jones, On the effect of secondary nucleation on the crystal size distribution from a seeded batch crystallizer, Chem. Eng. Sci. 48 (1993) 551-560. https://doi.org/10.1016/0009-2509(93)80309-E
  24. M. Thommes, Physical adsorption characterization of nanoporous materials, Chemie-Ingenieur-Technik. 82 (2010) 1059-1073. https://doi.org/10.1002/cite.201000064
  25. B. Viswanathan, K.J.A. Raj, Effect of surface area, pore volume and particle size of P25 titania on the phase transformation of anatase to rutile, Indian J. Chem. - Sect. A Inorganic, Phys. Theor. Anal. Chem. 48 (2009) 1378-1382.
  26. Y. Duan, N. Fu, Q. Liu, Y. Fang, X. Zhou, J. Zhang, Y. Lin, Sn-doped TiO2 photoanode for dye-sensitized solar cells, J. Phys. Chem. C. 116 (2012) 8888-8893. https://doi.org/10.1021/jp212517k
  27. X. Jiang, Y. Zhang, J. Jiang, Y. Rong, Y. Wang, Y. Wu, C. Pan, Characterization of Oxygen Vacancies Associates within the Hydrogenated TiO2 : a Positron Annihilation Study Characterization of Oxygen Vacancies Associates within the Hydrogenated TiO2 : a Positron Annihilation Study, J.Phys.Chem.C. 116 (2012) 22619-22624. https://doi.org/10.1021/jp307573c
  28. P. Li, E.Y. Jiang, H.L. Bai, Fabrication of ultrathin epitaxial γ-Fe2O3 films by reactive sputtering, J. Phys. D. Appl. Phys. 44 (2011) 075003. https://doi.org/10.1088/0022-3727/44/7/075003
  29. T. Ohsaka, F. Izumi, Y. Fujiki, Raman spectrum of anatase, TiO2, J. Raman Spectrosc. 7 (1978) 321-324. https://doi.org/10.1002/jrs.1250070606
  30. A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S.K. Saha, U. V. Waghmare, K.S. Novoselov, H.R. Krishnamurthy, A.K. Geim, A.C. Ferrari, A.K. Sood, Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor, Nat. Nanotechnol. 3 (2008) 210-215. https://doi.org/10.1038/nnano.2008.67
  31. N. Serpone, C. Organica, V. Uni, V. Taramelli, V. Pa, Is the Band Gap of Pristine TiO2 Narrowed by Anion- and Cation-Doping of Titanium Dioxide in Second-Generation Photocatalysts?, J. Phys. Chem. B. 110 (2006) 24287-24293. https://doi.org/10.1021/jp065659r
  32. C.H. Wu, Effects of operational parameters on the decolorization of C.I. Reactive Red 198 in UV/TiO2-based systems, Dye. Pigment. 77 (2008) 31-38. https://doi.org/10.1016/j.dyepig.2007.03.003
  33. A.G. Thomas, W.R. Flavell, A.R. Kumarasinghe, A.K. Mallick, D. Tsoutsou, G.C. Smith, R. Stockbauer, S. Patel, M. Gratzel, R. Hengerer, Resonant photoemission of anatase TiO2 (101) and (001) single crystals, Phys. Rev. B. 67 (2003) 035110. https://doi.org/10.1103/PhysRevB.67.035110
  34. J.. Dalton, P.. Janes, N.. Jones, J.. Nicholson, K.. Hallam, G.. Allen, Photocatalytic oxidation of NOx gases using TiO2: a surface spectroscopic approach, Environ. Pollut. 120 (2002) 415-422. https://doi.org/10.1016/S0269-7491(02)00107-0
  35. J. Ma, H. Wu, Y. Liu, H. He, Photocatalytic Removal of NOx over Visible Light Responsive Oxygen-Deficient TiO2, J. Phys. Chem. C. 118 (2014) 7434-7441. https://doi.org/10.1021/jp500116n
  36. H. Wang, Z. Wu, W. Zhao, B. Guan, Photocatalytic oxidation of nitrogen oxides using TiO2 loading on woven glass fabric, Chemosphere. 66 (2007) 185-190. https://doi.org/10.1016/j.chemosphere.2006.04.071