• Title/Summary/Keyword: Bio-medical Devices

Search Result 106, Processing Time 0.021 seconds

Introduction to Ionic Polymer-Metal Composite Actuators and Their Applications (이온성 고분자-금속 복합체 작동기의 소개 및 이의 응용)

  • Jeon, Jin-Han;Oh, Il-Kwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.11
    • /
    • pp.1242-1250
    • /
    • 2011
  • Several biomimetic artificial muscles including the electro-active synthetic polymers (SSEBS, PSMI/PVDF, SPEEK/PVDF, SPSE, XSPSE, PVA/SPTES and SPEI), bio-polymers (Bacterial Cellulose and Cellulose Acetate) and nano-composite (SSEBS-CNF, SSEBS-$C_{60}$, Nafion-$C_{60}$ and PHF-SPEI) actuators are introduced in this paper. Also, some applications of the developed biomimetic actuators are explained including biomimetic robots and biomedical active devices. Present results show that the developed electro-active polymer actuators with high-performance bending actuation can be promising smart materials applicable to diverse applications.

A Study on Distributed Gateway for The Bio-signal Management in U-Healthcare (유 헬스케어에서 생체신호관리를 위한 분산형 게이트웨이에 관한 연구)

  • Lee, Seok-Hee;Woo, Sung-Hee;Ryu, Geun-Taek
    • 전자공학회논문지 IE
    • /
    • v.49 no.2
    • /
    • pp.58-64
    • /
    • 2012
  • In this paper, we proposed a distributed gateway for ubiquitous healthcare system. We also designed and implemented protocol conversion and processing algorithms to exchange a seamless information, the bio signals between the databases and the receiving devices from ZigBee to gateway and from the gateway to database and network. The distributed gateway system consists of the bio signal acquisition, ZigBee modules, distributed databases, and gateways. The bio signals detected by the ZigBee module are sent to the gateway. The distributed gateway analyzes the data being transferred, sends those to the receiving devices, and lets the authorized personnel access. The proposed system can be utilized in various fields including activity analysis for the elderly, security systems, home network service, and so on.

Development of Micro-needle Device for Direct Drug Delivery into the Dermis (직접약물전달형 마이크로니들 장치)

  • Eum, Nyeon-Sik;Kim, Hyung-Kyung;Han, Jung Hyun;Kim, Su-Jeong;Park, Hee-Joon;Kang, Shin-Won
    • Journal of Biomedical Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.202-206
    • /
    • 2012
  • In this study, we developed transdermal direct drug delivery device using micro-needle painlessly. We has fabricated micro-needle that is 130 ${\mu}m$ thickness and 250 ${\mu}m$length with 10 ${\mu}m$ spiral groove for rolling down drug. Head part of micro-needle device is composed of 20ea micro-needles, an on-off valve and a protective cap. Glass bottle for containing drug is connected to head part of micro-needle device. We examined the puncture characteristic testing using porcine skin and drug delivery testing using porcine, rat skin with Indian Ink.

EasyCare : An Agent-based u-Healthcare System for Managing Patients with Heart Diseases (EasyCare : 심계질환자 관리를 위한 에이전트 기반의 u-헬스케어 시스템)

  • Cho, Hyun Joo;Kim, Sangchul
    • Journal of Information Technology Services
    • /
    • v.10 no.1
    • /
    • pp.177-190
    • /
    • 2011
  • Due to the growth of economy and the advancement of IT, the life expectancy has been prolonged and the interests in health have greatly increased. Recently the request for systems that enable measuring the bio-signals of patients in the non medical organizations, such as home, and transmitting them to medical staffs at remote sites for monitoring them. In this paper, we present an agent-based u-health system for patients or suspects with heart diseases. Our system consists of portable devices for measuring bio-signals and agents that perform data collection, data storage, automatic detection of abnormal status in patients, and HL7-based data exchange in a cooperative way. The main features of the system are : the agent-based architecture facilitates the addition of new service modules as well as the modification of existing ones; an intelligent agent is provided which automatically detects situations in which the bio-signals of patients are abnormal; the medical data standard is supported so that the communication with other systems is very easy. To our survey, there have been few previous systems which support all those features in a seamless way.

Current Development in Bio-implantable Sensors

  • Swarup, Biswas;Yongju, Lee;Hyojeong, Choi;Hyeok, Kim
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.403-410
    • /
    • 2022
  • Flexible and wearable sensing technologies have emerged as a result of developments in interdisciplinary research across several fields, bringing together various subjects such as biology, physics, chemistry, and information technology. Moreover, various types of flexible wearable biocompatible devices, such customized medical equipment, soft robotics, bio-batteries, and electronic skin patches, have been developed over the last several years that are extensively employed to monitor biological signals. As a result, we present an updated overview of new bio-implantable sensor technologies for various applications and a brief review of the state-of-the-art technologies.

A Novel Non-contact Heart Rate Estimation Algorithm and System with User Identification

  • Kim, Chan-Il;Kim, Hyung-Jin;Kim, Seon-Chil;Park, Hee-Jun;Lee, Jong-ha
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.6
    • /
    • pp.395-402
    • /
    • 2016
  • In these days, the wearable devices have been developed for measuring biological data effectively. However, wearable devices have tissue allege and noise problem. Also, it is impossible for a remote center to identify the person whose data are measured by wearable devices, which could trigger a communication problem over treatment. To solve these problems, biometric measurement based on a non-contact method, such as face image sequencing is necessary. This makes it possible to measure biometric data without any operation and side effects. This system can monitor the biological signals of people in real time without allege and noise and simultaneously identify them. In this paper, we propose an authentication process while measuring biometric data, through a non-contact method.

Study of Platform for Real-Time Medical Information Protection and Management (실시간 의료정보 보호 및 관리를 위한 플랫폼에 관한 연구)

  • Jeong, Chang Won;Lee, Sung Gwon;Joo, Su Chong
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.3 no.8
    • /
    • pp.245-250
    • /
    • 2014
  • In recent years, the developments of medical technology and emergency medical services have been changed to home from the hospital. In this regard, the researches for the prevention or early diagnosis have become actively. In particular, bio-signal monitoring is applied to a variety of u-healthcare application services. The proposed system in this paper is to provide a security technology to protect the medical information measured from the various sensors. Especially, bio-signal information is privacy-sensitive personal information that must be protected. We applied a two-dimensional code technology, QR code, for the protection and management. In the client side, it can analyze the QR code and confirm the results on devices. Finally, with this proposed platform, we show the results of application service to verify the creation and distribution of integrated image file between the bio-signal and medical image information.

Fabrication of Size-Controlled Hole Array by Surface-Catalyzed Chemical Deposition (표면 촉매 화학 반응을 이용한 크기 조절이 가능한 홀 어레이 제작)

  • Park, Hyung Ju;Park, Jeong Won;Lee, Dae-Sik;Pyo, Hyeon-Bong
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.55-58
    • /
    • 2018
  • Low-cost and large-scale fabrication method of nanohole array, which comprises nanoscale voids separated by a few tens to a few hundreds of nanometers, has opened up new possibilities in biomolecular sensing as well as novel frontier optical devices. One of the key aspects of the nanohole array research is how to control the hole size following each specific needs of the hole structure. Here, we report the extensive study on the fine control of the hole size within the range of 500-2500 nm via surface-catalyzed chemical deposition. The initial hole structures were prepared via conventional photo-lithography, and the hole size was decreased to a designed value through the surface-catalyzed chemical reduction of the gold ion on the predefined hole surfaces, by simple dipping of the hole array device into the aqueous solution of gold chloride and hydroxylamine. The final hole size was controlled by adjusting reaction time, and the optimal experimental condition was obtained by doing a series of characterization experiments. The characterization of size-controlled hole array was systematically examined on the image results of optical microscopy, field emission scanning electron microscopy(FESEM), atomic-force microscopy(AFM), and total internal reflection microscopy.

A Theoretical Study and Implementation of Spinal Traction System (척추견인 시스템의 인체 역학적 견인력에 대한 이론적 고찰 및 구현에 관한 연구)

  • Chang, Hojong;Lee, Song Jae
    • Journal of Biomedical Engineering Research
    • /
    • v.35 no.2
    • /
    • pp.19-25
    • /
    • 2014
  • According to recent data more than 80% of people suffer from back pain, due to an aging and a poor posture, at least once in their life time, and 7~10% of them have chronic spine illness. Researchers over the years have studied on various spinal traction devices that utilize the force of traction, and have also reported clinical test results. However, most existing devices are too complicated and too expensive. In order to solve these problems, we have developed a new device in which the frame moves up and down and at the same time tilting angle of the frame is adjusted. We have analyzed the forces applied on the body as a function of tilting angle. And the result shows that the new device has achieved the force of traction, which is known to be effective for spinal rehabilitation.

m-Health System for Processing of Clinical Biosignals based Android Platform (안드로이드 플랫폼 기반의 임상 바이오신호 처리를 위한 모바일 헬스 시스템)

  • Seo, Jung-Hee;Park, Hung-Bog
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.7
    • /
    • pp.97-106
    • /
    • 2012
  • Management of biosignal data in mobile devices causes many problems in real-time transmission of large volume of multimedia data or storage devices. Therefore, this research paper intends to suggest an m-Health system, a clinical data processing system using mobile in order to provide quick medical service. This system deployed health system on IP network, compounded outputs from many bio sensing in remote sites and performed integrated data processing electronically on various bio sensors. The m-health system measures and monitors various biosignals and sends them to data servers of remote hospitals. It is an Android-based mobile application which patients and their family and medical staff can use anywhere anytime. Medical staff access patient data from hospital data servers and provide feedback on medical diagnosis and prescription to patients or users. Video stream for patient monitoring uses a scalable transcoding technique to decides data size appropriate for network traffic and sends video stream, remarkably reducing loads of mobile systems and networks.