Introduction to Ionic Polymer-Metal Composite Actuators and Their Applications

이온성 고분자-금속 복합체 작동기의 소개 및 이의 응용

  • Jeon, Jin-Han (School of Mechanical Aerospace and Systems Engineering, KAIST) ;
  • Oh, Il-Kwon (School of Mechanical Aerospace and Systems Engineering, KAIST)
  • 전진한 (한국과학기술원 기계항공시스템공학부) ;
  • 오일권 (한국과학기술원 기계항공시스템공학부)
  • Received : 2011.09.16
  • Accepted : 2011.10.04
  • Published : 2011.11.01

Abstract

Several biomimetic artificial muscles including the electro-active synthetic polymers (SSEBS, PSMI/PVDF, SPEEK/PVDF, SPSE, XSPSE, PVA/SPTES and SPEI), bio-polymers (Bacterial Cellulose and Cellulose Acetate) and nano-composite (SSEBS-CNF, SSEBS-$C_{60}$, Nafion-$C_{60}$ and PHF-SPEI) actuators are introduced in this paper. Also, some applications of the developed biomimetic actuators are explained including biomimetic robots and biomedical active devices. Present results show that the developed electro-active polymer actuators with high-performance bending actuation can be promising smart materials applicable to diverse applications.

Keywords

References

  1. Jung, Y. D., Park, H. S., Jo, N. J. and Jeong, H. D., "Development and Performance Evaluation of Polymer Micro-actuator using Segmented Polyurethane and Polymer Composite," Journal of the Korean Society for Precision Engineering, Vol. 22, No. 2, pp. 180-187, 2005.
  2. Kim, J., Lee, H. and Kim, H. S., "Beam Vibration Control Using Cellulose-based Electro-Active Paper Sensor," International Journal of Precision Engineering and Manufacturing, Vol. 11, No. 6, pp. 823-287, 2010. https://doi.org/10.1007/s12541-010-0099-8
  3. Lee, J. H., Oh, J. S., Jeong, G. H., Lee, J. Y., Yoon, B. R., Jho, J. Y. and Rhee, K., "New Computational Model for Predicting the Mechanical Behavior of Ionic Polymer Metal Composite (IPMC) Actuators," International Journal of Precision Engineering and Manufacturing, Vol. 12, No. 4, pp. 739-740, 2011.
  4. Jeon, J. H., Yeom, S. W. and Oh, I. K., "Fabrication and actuation of ionic polymer metal composites patterned by combining electroplating with electroless plating," Composites Part A, Vol. 39, No. 4, pp. 588-596, 2008. https://doi.org/10.1016/j.compositesa.2007.07.013
  5. Wang, X. L., Oh, I. K., Lu, J., Ju, J. and Lee, S., "Biomimetic electro-active polymer based on sulfonated poly(styrene-b-ethylene-co-butylene-bstyrene)," Materials Letters, Vol. 61, No. 29, pp. 5117-5120, 2007. https://doi.org/10.1016/j.matlet.2007.04.004
  6. Lu, J., Kim, S. G., Lee, S. and Oh, I. K., "A biomimetic actuator based on an ionic networking membrane of poly(styrene-alt-maleimide)- incorporated poly(vinylidene fluoride)," Advanced Functional Materials, Vol. 18, No. 8, pp. 1290-1298, 2008. https://doi.org/10.1002/adfm.200701133
  7. Jeon, J. H., Kang, S. P., Lee, S. and Oh, I. K., "Novel biomimetic actuator based on SPEEK and PVDF," Sensors and actuators B: Chemical, Vol. 143, No. 1, pp. 357-364, 2009. https://doi.org/10.1016/j.snb.2009.09.020
  8. Wang, X. L., Oh, I. K. and Cheng, T. H., "Electroactive polymer actuators employing sulfonated poly(styrene-ran-ethylene) as ionic membranes," Polymer International, Vol. 59, No. 3, pp. 305-312, 2010. https://doi.org/10.1002/pi.2775
  9. Wang, X. L., Oh, I. K. and Xu, L., "Electro-active artificial muscle based on irradiation-crosslinked sulfonated poly(styrene-ran-ethylene)," Sensors and actuators B: Chemical, Vol. 145, No. 2, pp. 635-642, 2010. https://doi.org/10.1016/j.snb.2010.01.001
  10. Wang, X. L., Oh, I. K. and Lee, S., "Electroactive artificial muscle based on crosslinked PVA/SPTES," Sensors and Actuators B: Chemical, Vol. 150, No. 1, pp. 57-64, 2010. https://doi.org/10.1016/j.snb.2010.07.042
  11. Rajagopalan, M., Jeon J. H. and Oh, I. K., "Electricstimuli- responsive bending actuator based on sulfonated polyetherimide," Sensors and Actuators B: Chemical, Vol. 151, No. 1, pp.198-204, 2010. https://doi.org/10.1016/j.snb.2010.09.021
  12. Jeon, J. H., Oh, I. K., Kee, C. D. and Kim, S. J., "Bacterial cellulose actuator with electrically driven bending deformation in hydrated condition," Sensors and Actuators B: Chemical, Vol. 146, No. 1, pp. 307- 313, 2010. https://doi.org/10.1016/j.snb.2010.02.046
  13. Li, J., Sridhar, V., Kee, C. D. and Oh, I. K., "Electrospun Fullerenol-Cellulose Biocompatible Actuators," Biomacromolecules, Vol. 12, No. 6, pp. 2048-2054, 2011. https://doi.org/10.1021/bm2004252
  14. Wang, X. L., Oh, I. K. and Kim, J. B., "Enhanced electromechanical performance of carbon nano-fiber reinforced sulfonated poly(styrene-b-[ethylene/ butylene]-b-styrene) actuator," Composite Science and Technology, Vol. 69, No. 13, pp. 2098-2101, 2009. https://doi.org/10.1016/j.compscitech.2008.08.023
  15. Wang, X. L. and Oh, I. K., "Sulfonated Poly(styreneb- ethylene-co-butylene-b-styrene) and Fullerene Composites for Ionic Polymer Actuators," Journal of Nanoscience and Nanotechnology, Vol. 10, No. 5, pp. 3203-3206, 2010. https://doi.org/10.1166/jnn.2010.2252
  16. Jung, J. H., Sridhar, V. and Oh, I. K., "Electro-active nano-composite actuator based on fullerenereinforced Nafion," Composites Science and Technology, Vol. 70, No. 4, pp. 584-592, 2010. https://doi.org/10.1016/j.compscitech.2009.12.007
  17. Oh, I. K., Jung, J. H., Jeon, J. H. and Sridhar, V., "Electro-chemo-mechanical characteristics of fullerene-reinforced ionic polymer-metal composite transducers," Smart Materials and Structures, Vol. 19, No. 7, Paper No. 075009, 2010. https://doi.org/10.1088/0964-1726/19/7/075009
  18. Rajagopalan, M. and Oh, I. K., "Fullerenol-Based Electroactive Artificial Muscles Utilizing Biocompatible Polyetherimide," ACS Nano, Vol. 5, No. 3, pp. 2248-2256, 2011. https://doi.org/10.1021/nn103521g
  19. Thinh, N. T., Yang, Y. S. and Oh, I. K., "Adaptive neuro-fuzzy control of ionic polymer metal composite actuators," Smart Materials and Structures, Vol. 18, No. 6, Paper No. 065016, 2009. https://doi.org/10.1088/0964-1726/18/6/065016
  20. Xing, H. L., Jeon, J. H., Park, K. C. and Oh, I. K., "Active Disturbance Rejection Control for Precise Position Tracking of Ionic Polymer-Metal Composite Actuators," IEEE ASME Trans. on Mechatronics, DOI: 10.1109/TMECH.2011.2163524
  21. Yeom, S. W. and Oh, I. K., "A biomimetic jellyfish robot based on ionic polymer metal composite actuators," Smart Materials and Structures, Vol. 18, No. 8, Paper No. 085002, 2009. https://doi.org/10.1088/0964-1726/18/8/085002
  22. Oh, I. K., Jeon, J. H. and Park, J. W., "Snap-through micro-pump," Industry Foundation of Chonnam National University, No. 10-0931894, 2010.
  23. Oh, I. K., Jeon, J. H. and Park, J. W., "Snap-through micro-pump," Industry Foundation of Chonnam National University, No. 10-0931897, 2010.
  24. Li, S. L., Kim, W. Y., Cheng, T. H. and Oh, I. K., "A helical ionic polymer-metal composite actuator for radius control of biomedical active stents," Smart Materials and Structures, Vol. 20, No. 3, Paper No. 035008, 2011. https://doi.org/10.1088/0964-1726/20/3/035008
  25. Oh, S. J., Kim, H., Choi, H. and Nam, J. D., "Development of Fuzzy control and Modeling of IPMC Actuator for the Endoscopic Microcapsule," Journal of the Korean Society for Precision Engineering, Vol. 20, No. 4, pp. 39-48, 2003.
  26. Park, H. S., Lee, J. Y., Jho, J. Y. and Rhee, K., "Analysis of an Active Catheter Using Thermal Equivalent Modeling of IPMC," Journal of the Korean Society for Precision Engineering, Vol. 24, No. 12, pp. 36-41, 2007.