• Title/Summary/Keyword: Bio-glass

Search Result 189, Processing Time 0.028 seconds

Novel Electroluminescent Polymer Derived from Pyrene-Functionalized Polyaniline

  • Amarnath, Chellachamy Anbalagan;Kim, Hyoung-Kun;Yi, Dong-Kee;Lee, Sang-Hyup;Do, Young-Rag;Paik, Un-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1495-1499
    • /
    • 2011
  • A solution processable polymer was synthesized, by incorporating pyrene groups into the backbone of the polyaniline chain, and used as an emissive layer in an organic light emitting diode. The polyaniline base was reacted with acid chloride of pyrene butyric acid to form pyrene-functionalized polyaniline chains. The source of pyrene moiety was acid chloride of pyrene butyric acid. The formation of polymer from acid chloride of pyrene butyric acid and polyaniline was confirmed by the FTIR and $^1H$-NMR spectroscopy. Differential scanning calorimetry revealed high glass transition temperature of 210 $^{\circ}C$. Due to the presence of pyrene moieties in the backbone, the polyaniline synthesized in the present study is solution processable with light emitting property. The photoluminescence spectrum of the polymer revealed that emission lies in the blue region, with a peak at 475 nm. The light emitting device of this polymer exhibits the turn-on voltage of 15 V.

Fast Microchip Electrophoresis Using Field Strength Gradients for Single Nucleotide Polymorphism Identification of Cattle Breeds

  • Oh, Doo-Ri;Cheong, Il-Cheong;Lee, Hee-Gu;Eo, Seong-Kug;Kang, Seong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.7
    • /
    • pp.1902-1906
    • /
    • 2010
  • A microchip electrophoresis (ME) method was developed using a programmed field strength gradients (PFSG) for the single nucleotide polymorphism (SNP) based fast identification of cattle breeds. Four different Korean cattle (Hanwoo) and Holstein SNP markers amplified by allele-specific polymerase chain reaction were separated in a glass microchip filled with 0.5% poly(ethyleneoxide) ($M_r$ = 8 000 000) by PFSG as follows: 750 V/cm for 0 - 14 s, 166.7 V/cm for 14 - 31 s, 83.3 V/cm for 31 - 46 s, and 750 V/cm for 46 - 100 s. The cattle breeds were clearly distinguished within 45 s. The ME-PFSG method was 7 times and 5 times faster than the constant electric field ME method and the capillary electrophoresis- PFSG method, respectively, with a high resolving power ($R_s$ = 5.05 - 9.98). The proposed methodology could be a powerful tool for the fast and simultaneous determination of SNP markers for various cattle breeds with high accuracy.

Novel Fabrication Process for Micro-Fluidic Channels and the Effect of the Surface States on the Fluid Flow (미세유로채널의 새로운 제작공정 및 표면상태가 유동에 미치는 영향)

  • 박미석;김진산;성인하;김대은;신보성
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.1
    • /
    • pp.87-93
    • /
    • 2004
  • Recently, with the development of bio-technology the interests in the micro-fluidic devices for analysis in the fields of biology and medical science have been steadily increasing. Although polymer is considered as one of the best materials for micro-fluidic devices. glass or silicon molds fabricated by photo-lithographic technique have been commonly used. However, it is generally perceived that the conventional photolithographic technique has the limitation for fabricating micro-channels for micro-fluidic devices. In this work, the possibility of fabrication of micro-fluidic channels on PDMS by using the mechano-chemical process and the effect of surface states on the fluid flow were investigated. Experimental results revealed that PDMS mold fabricated by the mechano-chemical process could be used effectively to replicate micro-fluidic channels with high reproducibility and dimensional accuracy. It was also found that the fluid flow generation and flow speed were largely affected by the hydrophilicity and the surface roughness of the micro-channel surfaces.

A study on the process optimization of injection molding for replicability enhancement of micro channel (미세채널 전사성 향상을 위한 사출성형 공정최적화 기초연구)

  • Go, Young-Bae;Kim, Jong-Sun;Yu, Jae-Won;Min, In-Gi;Kim, Jong-Duck;Yoon, Kyung-Hwan;Hwang, Cheul-Jin
    • Design & Manufacturing
    • /
    • v.2 no.1
    • /
    • pp.45-50
    • /
    • 2008
  • Micro channel is to fabricate desired pattern on the polymer substrate by pressing the patterned mold against the substrate which is heated above the glass transition temperature, and it is a high throughput fabrication method for bio chip, optical microstructure, etc. due to the simultaneous large area patterning. However, the bad pattern fidelity in large area patterning is one of the obstacles to applying the hot embossing technology for mass production. In the present study, stamper of cross channel with width $100{\mu}m$ and height $50{\mu}m$ was manufactured using UV-LiGA process. Micro channel was manufactured using stamper manufactured in this study. Also replicability appliance was evaluated for micro channel and factors affected replicability were investigated using Taguchi method.

  • PDF

The Fabrication of Megasonic Agitated Module(MAM) for the Improved Characteristics of Wet Etching

  • Park, Tae-Gyu;Yang, Sang-Sik;Han, Dong-Chul
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.271-275
    • /
    • 2008
  • The MAM(Megasonic Agitated Module) has been fabricated for improving the characteristics of wet etching. The characteristics of the MAM are investigated during the wet etching with and without megasonic agitation in this paper. The adoption of the MAM has improved the characteristics of wet etching, such as the etch rate, etch uniformity, and surface roughness. Especially, the etching uniformity on the entire wafer was less than ${\pm}1%$ in both cases of Si and glass. Generally, the initial root-mean-square roughness($R_{rms}$) of the single crystal silicon was 0.23nm. Roughnesses of 566nm and 66nm have been achieved with magnetic stirring and ultrasonic agitation, respectively, by some researchers. In this paper, the roughness of the etched Si surface is less than 60 nm. Wet etching of silicon with megasonic agitation can maintain nearly the original surface roughness during etching. The results verified that megasonic agitation is an effective way to improve etching characteristics of the etch rate, etch uniformity, and surface roughness and that the developed micromachining system is suitable for the fabrication of devices with complex structures.

Electrical Property of Electrospun PCL/MWCNTs Nanofiber with Additive Silver Thin Film (은 박막이 첨가된 전기방사법으로 제작한 PCL/MWCNTs 나노섬유의 전기적 특성)

  • Kim, Jin Un;Kim, Kyong Min;Park, Kyoung Wan;Sok, Jung Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.4
    • /
    • pp.238-243
    • /
    • 2018
  • A nanofiber was fabricated with carbon nanotubes for transparent electrodes. It was prepared with a composite solution of bio-molecules polycaprolactone (PCL) and multiwalled carbon nanotubes (MWCNTs) by electrospinning on a glass substrate, following which its electrical characteristics were investigated. The content of MWCNTs was varied during electrospinning, while that of PCL was fixed. Further, a nanometer-thick thin film of silver was deposited on the nanofiber layer using a thermal evaporator to improve the electrical characteristics; the sheet resistance significantly reduced after this deposition. The results showed that this carbon nanotube nanofiber has potential applications in biotechnology and as a flexible transparent display material.

4 Inch Wafer-Scale Replicability Enhancement in Hot Embossing by using PDMS-Cushioned Si Mold (PDMS 쿠션을 갖는 Si 몰드에 의한 핫엠보싱 공정에서의 4 인치 웨이퍼 스케일 전사성 향상)

  • Kim Heung-Kyu;Ko Young-Bae;Kang Jeong-Jin;Heo Young-Moo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.8 s.185
    • /
    • pp.178-184
    • /
    • 2006
  • Hot embossing is to fabricate desired pattern on the polymer substrate by pressing the patterned mold against the substrate which is heated above the glass transition temperature, and it is a high throughput fabrication method for bio chip, optical microstructure, etc. due to the simultaneous large area patterning. However, the bad pattern fidelity in large area patterning is one of the obstacles to applying the hot embossing technology for mass production. In the present study, PDMS pad was used as a cushion on the backside of the micro-patterned 4 inch Si mold to improve the pattern fidelity over the 4 inch PMMA sheet by increasing the conformal contact between the Si mold and the PMMA sheet. The pattern replicability improvement over 4 inch wafer scale was evaluated by comparing the replicated pattern height and depth for PDMS-cushioned Si mold against the rigid Si mold without PDMS cushion.

Environmental Prediction in Greenhouse According to Modified Greenhouse Structure and Heat Exchanger Location for Efficient Thermal Energy Management (효율적인 열에너지 관리를 위한 온실 형상 및 열 교환 장치 위치 개선에 따른 온실 내부 환경 예측)

  • Jeong, In Seon;Lee, Chung Geon;Cho, La Hoon;Park, Sun Yong;Kim, Seok Jun;Kim, Dae Hyun;Oh, Jae-Heun
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.278-286
    • /
    • 2021
  • In this study, based on the Computational Fluid Dynamics (CFD) simulation model developed through previous study, inner environmenct of the modified glass greenhouse was predicted. Also, suggested the optimal shape of the greenhouse and location of the heat exchangers for heat energy management of the greenhouse using the developed model. For efficient heating energy management, the glass greenhouse was modified by changing the cross-section design and the location of the heat exchanger. The optimal cross-section design was selected based on the cross-section design standard of Republic of Korea's glass greenhouse, and the Fan Coil Unit(FCU) and the radiating pipe were re-positioned based on "Standard of greenhouse environment design" to enhance energy saving efficiency. The simulation analysis was performed to predict the inner temperature distribution and heat transfer with the modified greenhouse structure using the developed inner environment prediction model. As a result of simulation, the mean temperature and uniformity of the modified greenhouse were 0.65℃, 0.75%p higher than those of the control greenhouse, respectively. Also, the maximum deviation decreased by an average of 0.25℃. And the mean age of air was 18 sec. lower than that of the control greenhouse. It was confirmed that efficient heating energy management was possible in the modified greenhouse, when considered the temperature uniformity and the ventilation performance.

Estimation of Secondary Scattered Dose from Intensity-modulated Radiotherapy for Liver Cancer Cases (간암환자에 대한 세기조절방사선치료에서의 2차 산란선량평가)

  • Kim, Dong Wook;Sung, Jiwon;Lee, Hyunho;Yoon, Myonggeun;Chung, Weon Kuu;Bae, Sun Hyun;Shin, Dong Oh;Chung, Kwangzoo;Lim, Young Kyung;Shin, Donho;Lee, Se Byeong
    • Progress in Medical Physics
    • /
    • v.24 no.4
    • /
    • pp.295-302
    • /
    • 2013
  • We estimated secondary scattered and leakage doses for intensity-modulated radiotherapy (IMRT), volumetric arc therapy (VMAT) and tomotherapy (TOMO) in patients with liver cancer. Five liver patients were planned by IMRT, VMAT and TOMO. Secondary scatter (and leakage) dose and organ equivalent doses (OEDs) are measured and estimated at various points 20 to 80 cm from the iso-center by using radiophotoluminescence glass dosimeter (RPLGD). The secondary dose per Gy from IMRT, VMAT and TOMO for liver cancer, measured 20 to 80 cm from the iso-center, are 0.01~3.13, 0.03~2.34 and 0.04~1.29 cGy, respectively. The mean values of relative OED of secondary dose of VMAT and TOMO for five patients, which is normalized by IMRT, measured as 75.24% and 50.92% for thyroid, 75.14% and 40.61% for bowel, 72.30% and 47.77% for rectum, 76.21% and 49.93% for prostate. The secondary dose and OED from TOMO is relatively low to those from IMRT and VMAT. OED based estimation suggests that the secondary cancer risk from TOMO is less than or comparable to the risks from conventional IMRT and VMAT.

Experimental Study with Respect to Dose Characteristic of Glass Dosimeter for Low-Energy by Using Internal Detector of Piranha 657 (Piranha 657의 Internal Detector를 이용한 저에너지에서 유리선량계의 선량 특성에 관한 연구)

  • Son, Jin-Hyun;Min, Jung-Whan;Kim, Hyun-Soo;Lyu, Kwang-Yeul;Lim, Hyun-Soo;Kim, Jung-Min;Jeong, Hoi-Woun
    • Journal of radiological science and technology
    • /
    • v.35 no.2
    • /
    • pp.119-124
    • /
    • 2012
  • Recently, Glass Dosimeter (GD) with thermoluminescent Dosimeter (TLD) are comprehensively used to measure absorbed dose from diagnostic field to therapy field that means from low energy field to high energy field. However, such studies about dose characteristics of GD, such as reproducibility and energy dependency, are mostly results in high energy field. Because characteristic study for measurement devices of radiation dose and radiation detector is performed using 137Cs and 60Co which emit high energy radiations. Thus, this study was evaluated the linearity according to Piranha dose which measured by changing tube voltage (50kV, 80kV and 100kV which are low energy radiations), reproducibility and reproducibility according to delay time using GD. Measurement of radiation dose is performed using internal detector of Piranha 657 which is multi-function QA device (RTI Electronic, Sweden). Condition of measurement was 25mA, 0.02sec, 2.5mAs, SSD of 100 cm and exposure area with $10{\times}10cm^2$. As above method, GD was exposed to radiation. Sixty GDs were divided into three groups (50kV, 80kV, 100kV), then measured. In this study, GD was indicated the linearity in low energy field as high energy existing reported results. The reproducibility and reproducibility according to delay time were acceptable. In this study, we could know that GD can be used to not only measure the high energy field but also low energy field.