DOI QR코드

DOI QR Code

Environmental Prediction in Greenhouse According to Modified Greenhouse Structure and Heat Exchanger Location for Efficient Thermal Energy Management

효율적인 열에너지 관리를 위한 온실 형상 및 열 교환 장치 위치 개선에 따른 온실 내부 환경 예측

  • Jeong, In Seon (Forest Technology and Management Research Center, National Institute of Forest Science) ;
  • Lee, Chung Geon (Department of Interdisciplinary Program in Smart Agriculture, College of Agriculture and Life Sciences, Kangwon National University) ;
  • Cho, La Hoon (Department of Interdisciplinary Program in Smart Agriculture, College of Agriculture and Life Sciences, Kangwon National University) ;
  • Park, Sun Yong (Department of Interdisciplinary Program in Smart Agriculture, College of Agriculture and Life Sciences, Kangwon National University) ;
  • Kim, Seok Jun (Department of Interdisciplinary Program in Smart Agriculture, College of Agriculture and Life Sciences, Kangwon National University) ;
  • Kim, Dae Hyun (Department of Interdisciplinary Program in Smart Agriculture, College of Agriculture and Life Sciences, Kangwon National University) ;
  • Oh, Jae-Heun (Forest Technology and Management Research Center, National Institute of Forest Science)
  • 정인선 (산림기술경영연구소) ;
  • 이충건 (강원대학교 스마트농업융합학과) ;
  • 조라훈 (강원대학교 스마트농업융합학과) ;
  • 박선용 (강원대학교 스마트농업융합학과) ;
  • 김석준 (강원대학교 스마트농업융합학과) ;
  • 김대현 (강원대학교 스마트농업융합학과) ;
  • 오재헌 (산림기술경영연구소)
  • Received : 2021.03.31
  • Accepted : 2021.09.27
  • Published : 2021.10.31

Abstract

In this study, based on the Computational Fluid Dynamics (CFD) simulation model developed through previous study, inner environmenct of the modified glass greenhouse was predicted. Also, suggested the optimal shape of the greenhouse and location of the heat exchangers for heat energy management of the greenhouse using the developed model. For efficient heating energy management, the glass greenhouse was modified by changing the cross-section design and the location of the heat exchanger. The optimal cross-section design was selected based on the cross-section design standard of Republic of Korea's glass greenhouse, and the Fan Coil Unit(FCU) and the radiating pipe were re-positioned based on "Standard of greenhouse environment design" to enhance energy saving efficiency. The simulation analysis was performed to predict the inner temperature distribution and heat transfer with the modified greenhouse structure using the developed inner environment prediction model. As a result of simulation, the mean temperature and uniformity of the modified greenhouse were 0.65℃, 0.75%p higher than those of the control greenhouse, respectively. Also, the maximum deviation decreased by an average of 0.25℃. And the mean age of air was 18 sec. lower than that of the control greenhouse. It was confirmed that efficient heating energy management was possible in the modified greenhouse, when considered the temperature uniformity and the ventilation performance.

본 연구에서는 단면설계 및 열 교환 장치 위치 변경을 통해 온실의 구조 변경을 진행하였으며, 선행연구를 통해 개발된 모델을 근간으로 하여 개선 여부에 따른 온실 내부 환경을 예측하였다. 단면형상과 열 교환 장치의 개선 후 유속 변화에 따른 시뮬레이션 분석을 진행하였으며, 이 때 온도와 균일도는 각각 평균 0.65℃, 0.75%p 상승함을 확인하였다. 해석대상 온실과 같은 소규모 온실의 경우 방열관의 난방성능 개선보다 FCU에 의해 형성되는 공기 유동이 균일한 환경 조성에 더 큰 영향을 미치는 것으로 판단된다. 개선 전·후 온실에 환기시스템 적용 시 공기 유동 특성 분석을 위해 시뮬레이션 분석을 진행하였다. 공기 유동과 공기령은 유사한 분포를 보였으며, 개선 후 온실의 공기령이 개선 전 온실 대비 18초낮게 나타났다. 개선 전·후 온실 시뮬레이션 분석 결과 전체적으로 개선된 온실에서의 평균온도 및 온도 균일도 상승, 최대편차 감소 등 내부 환경의 균일성이 향상됨을 확인하였다. 선행연구로 개발된 모델은 형상 변경, 열 교환 장치 위치 변경 등에 따라 변화하는 온실 내부 환경을 예측할 수 있음을 확인하였으며, 온실 설계, 온실 내 난방시스템 설계 등의 분야에 적용 가능할 것으로 판단된다.

Keywords

Acknowledgement

본 결과물은 농림축산식품부의 재원으로 농림식품기술기획평가원의 스마트팜다부처패키지혁신기술개발사업의 지원을 받아 연구되었음(421040-04).

References

  1. Ansys Inc., ANSYS FLUENT 19.1 Theory Guide, 2019a.
  2. Ansys Inc., ANSYS FLUENT 19.1 User's Guide, 2019b.
  3. Ansys Inc., ANSYS FLUENT UDF Manual, 2013.
  4. Choi H.Y., T.W. Moon, D.H. Jung, and J.E. Son 2019, Prediction of air temperature and relative humidity in greenhouse via a multilayer perceptron using environmental factors. Protected Hort Plant Fac 28:95-103. (in Korean) doi:10.12791/KSBEC.2019.28.2.95
  5. Fatnassi H., C. Poncet, M.M. Bazzano, R. Brun, and N. Bertin 2015, A numerical simulation of the photovoltaic greenhouse microclimate. Sol Energy 120:575-584. doi:10.1016/j.sol ener.2015.07.019.
  6. Hong S.W., and I.B. Lee 2014, Predictive model of micro-environment in a naturally ventilated greenhouse for a model-based control approach. Protected Hort Plant Fac 23:181-191. (in Korean) doi:10.12791/KSBEC.2014.23.3.181
  7. Jeong I.S., C.G. Lee, L.H. Cho, S.Y. Park, M.J. Kim, S.J. Kim, and D.H. Kim 2020, Development and validation of inner environment prediction model for glass greenhouse using CFD. Protected Hort Plant Fac 29:285-292. (in Korean) doi:10.12791/KSBEC.2020.29.3.285
  8. Kang D.H., S.Y. Lee, J.E. Son, I.B. Lee, and S.W. Nam 2015, Design standards for greenhouse environment. Rural Development Administrations. (in Korean)
  9. Kim H.S. 2001, Prediction of cooling effect for fog cooling system in greenhouse by CFD simulation. Master Diss., Seoul National University, Seoul, Korea, pp 1-45. (in Korean)
  10. Lee S.G., H.W. Lee, Y.H. Kim, J.H. Lee, J.W. Lee, H.S. Nam, Y.C. Yoon, and W.M. Seo 1998, Optimum design of greenhouse structure for efficient environment control and energy saving. Kyungpook National University, Korea, pp 34-133. (in Korean)
  11. Lee T.S., G.C. Kang, T. Paek, J.P. Moon, S.S. Oh, and J.K. Kwon 2017, Analysis of air temperature and humidity distributions and energy consumptions according to use of air circulation fans in a single-span greenhouse. Protected Hort Plant Fac 26:276-282. (in Korean) doi:10.12791/KSBEC.2017.26.4.276
  12. Lee T.S., G.C. Kang, Y. Paek, J.P. Moon, S.S. Oh, and J.K. Kwon 2016, Analysis of temperature and humidity distributions according to arrangements of air circulation fans in single-span tomato greenhouse. Protected Hort Plant Fac 25:277-282. (in Korean) doi:10.12791/KSBEC.2016.25.4.277
  13. Lee Y.B., H.J. Jeon, and J.E. Son 2010, Facility horticulture. Hyangmunsa. Seoul, Korea, pp 21-166. (in Korean)
  14. Ministry of Agriculture, Food and Rural Affairs (MAFRA) 2019a, 2018 Facility vegetables greenhouse status and vegetable production performance. (in Korean)
  15. Ministry of Agriculture, Food and Rural Affairs (MAFRA) 2019b, 2018 Flower culture status. (in Korean)
  16. Nam S.W., and Y.S. Kim 2009, Analysis on the uniformity of temperature and humidity according to environment control in tomato greenhouses. Protected Hort Plant Fac 18:215-224. (in Korean)
  17. Park S.M., H.C. Kim, Y.G. Ku, S.W. Kim, and J.H. Bae 2012, Relation between temperature and growth of sweet pepper by growing areas in greenhouse. Kor J Hort Sci Technol 30:680-685. (in Korean) doi:10.7235/hort.2012.12078
  18. Shin H.H., Y.S. Kim, and S.W. Nam 2019, Effect of pipes layout and flow velocity on temperature distribution in greenhouses with hot water heating system. Protected Hort Plant Fac 28:335-341. (in Korean) doi:10.12791/KSBEC.2019.28.4.335
  19. Song C.H. 1997, Efficient temperature management technology. J Bio Fac Env 10:67-83. (in Korean)
  20. Tadj N., T. Bartzanas, D. Fidaros, B. Draoui, and C. Kittas 2010, Influence of heating system on greenhouse microclimate distribution. Trans ASABE 53:225-238. doi:10.13031/2013.29498
  21. Yu I.H., K.Y. Nam, M.W. Cho, H.R. Ryu, and D.G. Moon, 2014, Development of CFD model for analyzing the air flow and temperature distrubution in greenhouse with air-circulation fans. Korean J Agric Sci 41:461-472. (in Korean) doi:10.7744/cnujas.2014.41.4.461