• Title/Summary/Keyword: Bio-fuel cell

Search Result 44, Processing Time 0.023 seconds

A Study on Characteristic of the Bio-ethanol Produced on Fruit Wastes for Direct Ethanol Fuel Cell (DEFC) (과일폐기물을 이용한 DEFC용 바이오에탄올 제조 및 특성에 관한 연구)

  • Lee, Nam-Jin;Kim, Hyun-Soo;Cha, In-Su;Choi, Jeong-Sik
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.2
    • /
    • pp.257-264
    • /
    • 2011
  • This study discribes performance of DEFC (Direct Ethanol Fuel Cell) utilized bio-ethanol based on fruit wastes. To produce the bio-ethanol, fruit wastes were treated at temperature $120^{\circ}C$ and 90minutes in acid pre-treatment. After pre-treatment was done, alcohol fermentation process was running. Initial alcohol concentration was 5%. Using the multi coloumn distillation system, more than 95% ethanol was distilled and each component of bio-ethanol was analyzed. In DEFC performance test, it was revealed that cell performance was much higher than that of ethanol. Comparing ethanol with mixed fuel (bio-ethanol (10%) + ethanol (90%)), the performance of ethanol was higher than that of mixed fuel. Even though the bio-ethanol from the fruit wastes is corresponded with transport ethanol standards, it thought that organic matter in bio-ethanol could be negative effect on fuel cell.

Dynamic Behaviors of Redox Mediators within the Hydrophobic Layers as an Important Factor for Effective Microbial Fuel Cell Operation

  • Choi, Young-Jin;Kim, Nam-Joon;Kim, Sung-Hyun;Jung, Seun-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.4
    • /
    • pp.437-440
    • /
    • 2003
  • In a mediator-aided microbial fuel cell, the choice of a proper mediator is one of the most important factors for the development of a better fuel cell system as it transfers electrons from bacteria to the electrode. The electrochemical behaviors within the lipid layer of two representative mediators, thionin and safranine O both of which exhibit reversible electron transfer reactions, were compared with the fuel cell efficiency. Thionin was found to be much more effective than safranine O though it has lower negative formal potential. Cyclic voltammetric and fluorescence spectroscopic analyses indicated that both mediators easily penetrated the lipid layer to pick up the electrons produced inside bacteria. While thionin could pass through the lipid layer, the gradual accumulation of safranine O was observed within the layer. This restricted dynamic behavior of safranine O led to the poor fuel cell operation despite its good negative formal potential.

Development of Bipolar Plate Stack Type Microbial Fuel Cells

  • Shin, Seung-Hun;Choi, Young-jin;Na, Sun-Hee;Jung, Seun-ho;Kim, Sung-hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.2
    • /
    • pp.281-285
    • /
    • 2006
  • Microbial fuel cells (MFC) stacked with bipolar plates have been constructed and their performance was tested. In this design, single fuel cell unit was connected in series by bipolar plates where an anode and a cathode were made in one graphite block. Two types of bipolar plate stacked MFCs were constructed. Both utilized the same glucose oxidation reaction catalyzed by Gram negative bacteria, Proteus vulgaris as a biocatalyst in an anodic compartment, but two different cathodic reactions were employed: One with ferricyanide reduction and the other with oxygen reduction reactions. In both cases, the total voltage was the mathematical sum of individual fuel cells and no degradation in performance was found. Electricity from these MFCs was stored in a supercapacitor to drive external loads such as a motor and electric bulb.

A Study on Engine Performance and Exhaust Emission Characteristics of Gasoline Engine using Bio-ethanol Blended Fuel (가솔린 엔진(3.8L)에서 바이오에탄올 혼합연료의 성능 및 배출특성에 관한 연구)

  • Lee, Chi-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.4
    • /
    • pp.131-137
    • /
    • 2012
  • This article is about using the fuel mixed with 10% and 20% bio-ethanol to gasoline for the engine as a way to reduce carbon emission before commercializing future automobiles like fuel cell cars. The fuel mixed with 10% and 20% bio-ethanol showed output equivalent to that of the previous gasoline fuel. CO and $CO_2$ emission was somewhat reduced, but the difference was not significant. And the consumption of the fuel increased slightly. However, bio-ethanol is produced from bio mass growing with the absorption of carbon dioxide, so the total amount of carbon dioxide did not increase according to the result. In NOx, as the use of ethanol increases, the effect of reduction gets greater, and the emission of oxygen showed almost no change compared with gasoline.

Construction of Microbial Fuel Cells Using Thermophilic Microorganisms, Bacillus licheniformis and Bacillus thermoglucosidasius

  • Choi, Young-Jin;Jung, Eun-Kyoung;Park, Hyun-Joo;Paik, Seung R.;Jung, Seun-Ho;Kim, Sung-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.6
    • /
    • pp.813-818
    • /
    • 2004
  • A systematic study of microbial fuel cells comprised of thermophilic Bacillus licheniformis and Bacillus thermoglucosidasius has been carried out under various operating conditions. Substantial amount of electricity was generated when a redox mediator was used. Being affected by operation temperature, the maximum efficiency was obtained at 50$^{\circ}C$ with an open circuit voltage of ca. 0.7 V. While a small change around the optimum temperature did not make much effect on the cell performance, the rapid decrease in performance was observed above 70$^{\circ}C$. It was noticeable that fuel cell efficiency and discharge pattern strongly depended on the kind of carbon sources used in the initial culture medium. In the case of B. thermoglucosidasius, glucose alone was utilized constitutively as a substrate in the microbial fuel cell irrespective of used carbons sources. When B. licheniformis was cultivated with lactose as a carbon source, best charging characteristics were recorded. Trehalose, in particular, showed 41.2% coulombic efficiency when B. thermoglucosidasius was cultured in a starch-containing medium. Relatively good repetitive operation was possible with B. thermoglucosidasius cells up to 12 cycles using glucose as a carbon source, when they were cultured with lactose as an initial carbon source. This study demonstrates that highly efficient thermophilic microbial fuel cells can be constructed by a pertinent modulation of the operating conditions and by carefully selecting carbon sources used in the initial culture medium.

Energy Harvesting from Bio-Organic Substance Using Microbial Fuel Cell and Power Conditioning System (미생물 연료 전지와 전력 조절 시스템을 이용한 생체 유기 물질로부터의 전력 생산)

  • Yeo, Jeongjin;Yang, Yoonseok
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.5
    • /
    • pp.242-247
    • /
    • 2017
  • This study presents a bio-chemical energy harvesting system which can generate electric power from bioorganic substance contained in vermicompost. It produced electricity by inoculating microbial fuel cell(MFC) with earthworm-composted food waste. The generated electricity was converted into usable voltage level for mobile electronics through power conditioning circuits. The implemented prototype showed $200{\mu}W$ of maximum output electric power, which successfully supplied a beacon device which continuously transmitted data to nearby smartphone without a battery. The proposed system can help develop portable or bio-mimetic energy supply for sustainable use with further improvement.

Glucose Oxidation on Gold-modified Copper Electrode

  • Lim, Ji-Eun;Ahn, Sang Hyun;Pyo, Sung Gyu;Son, Hyungbin;Jang, Jong Hyun;Kim, Soo-Kil
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.9
    • /
    • pp.2685-2690
    • /
    • 2013
  • The activities of Au-modified Cu electrodes toward glucose oxidation are evaluated according to their fabrication conditions and physico-chemical properties. The Au-modified Cu electrodes are fabricated by the galvanic displacement of Au on a Cu substrate and the characteristics of the Au particles are controlled by adjusting the displacement time. From the glucose oxidation tests, it is found that the Au modified Cu has superior activity to the pure Au or Cu film, which is evidenced by the negative shift in the oxidation potential and enhanced current density during the electrochemical oxidation. Though the activity of the Au nanoparticles is a contributing factor, the enhanced activity of the Au-modified Cu electrode is due to the increased oxidation number of Cu through the electron transfer from Cu to more electronegative Au. The depletion of electron in Cu facilitates the oxidation of glucose. The stability of the Au-modified Cu electrode was also studied by chronoamperometry.

A Study on Bio-ethanol Production from Fruit Wastes (과일폐기물을 이용한 바이오에탄올 생산에 관한 연구)

  • Park, Se-Joon;Do, Yun-Ho;Choi, Jeong-Sik;Yoon, Young-Hoon;Cha, In-Su
    • Journal of Hydrogen and New Energy
    • /
    • v.20 no.2
    • /
    • pp.142-150
    • /
    • 2009
  • This paper presents bio-ethanol production from fruit wastes as it possibly alternate fossil fuel in the future. To illustrate the component ratio in exocarps of fruit wastes such as pears, apples, and persimmons, the amount of moisture, lignin, $\alpha$, $\beta$, $\gamma$-cellulose, and ash content were respectively examined by the ingredient analysis. Also, the amount of the glucose obtained from the enzyme hydrolysis using the axocarps was investigated. It was found in our results that the energy efficient process requires different temperature conditions for the saccharification step($50^{\circ}C$ and the fermentation step($30^{\circ}C$ in ethanol synthesis.

Ni Nanoparticles Supported on MIL-101 as a Potential Catalyst for Urea Oxidation in Direct Urea Fuel Cells

  • Tran, Ngan Thao Quynh;Gil, Hyo Sun;Das, Gautam;Kim, Bo Hyun;Yoon, Hyon Hee
    • Korean Chemical Engineering Research
    • /
    • v.57 no.3
    • /
    • pp.387-391
    • /
    • 2019
  • A highly porous Ni@MIL-101catalyst for urea oxidation was synthesized by anchoring Ni into a Cr-based metal-organic framework, MIL-101, particles. The morphology, structure, and composition of as synthesized Ni@MIL-101 catalysts were characterized by X-Ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy. The electro-catalytic activity of the Ni@MIL-101catalysts towards urea oxidation was investigated using cyclic voltammetry. It was found that the structure of Ni@MIL-101 retained that of the parent MIL-101, featuring a high BET surface area of $916m^2g^{-1}$, and thus excellent electro-catalytic activity for urea oxidation. A $urea/H_2O_2$ fuel cell with Ni@MIL-101 as anode material exhibited an excellent performance with maximum power density of $8.7mWcm^{-2}$ with an open circuit voltage of 0.7 V. Thus, this work shows that the highly porous three-dimensional Ni@MIL-101 catalysts can be used for urea oxidation and as an efficient anode material for urea fuel cells.