• Title/Summary/Keyword: Bio-ceramic

Search Result 127, Processing Time 0.031 seconds

Fabrication of a high performance microvalve using a multilayer piezoelectric actuator and its characteristics (적층형 압전 엑츄에이터를 이용한 고성능 마이크로 밸브의 제작과 그 특성)

  • Seo, Jung-Ho;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.390-391
    • /
    • 2006
  • This paper describes the design, fabrication and characteristics of a micromachined piezoelectric valve utilizing a multilayer ceramic actuator (MCA). The micromachined MCA valve, which uses a buckling effect, consists of three separate structures: the MCA, the valve actuator die and the seat die. The valve seat die with 6 trenches was made, and the actuator die, which is driven by the MCA under optimized conditions, was also fabricated. After Si wafer direct bonding between the seat die and the actuator die, the MCA was also anodically bonded to the seat/actuator die structure. A polydimethylsiloxane (PDMS) sealing pad was fabricated to minimize the leak rate. Finally, the PDMS sealing pad was also bonded to the seat die and the stainless steel package. The MCA valve shows a flow rate of 9.13 sccm at an applied DC voltage of 100 V with a 50% duty cycle and a maximum non-linearity of 2.24% FS. Therefore, the fabricated MCA valve is suitable for a variety of flow control equipment, as a medical bio-system and in the automobile industry.

  • PDF

Extract changes of Caulis Lonicerae Japonicae according to with or without Iron (인동(忍冬)의 기철(忌鐵) 및 반철(伴鐵) 추출시(抽出時) 추출물(抽出物)의 변화(變化))

  • Jeong, Deok Ja;Jung, Dae Hwa;Jang, Mi Hee;Park, Chung A;Kim, Sang Chan
    • Herbal Formula Science
    • /
    • v.28 no.3
    • /
    • pp.281-287
    • /
    • 2020
  • Objectives : In case of herbs decoction, the ceramic or earthware pots was recommended, but not the metals, particularly iron or aluminum, which could cause unknown chemical reactions. In Korean Medical classics, it has been known that some herbs including Caulis Lonicerae Japonicae (CL) were not recommended to boil with iron pot. This study investigates the physical changes of extracts of CL with or without iron. Methods : CL was decocted with reflux cooling extraction system to prevent evaporation and volatilization. Content of polyphenol was detected by Folin-Denis method and the levels of loganin and chlorogenic acid were evaluated by UPLC. Results : The color of extract with glass beads (GB) is yellowish brown, and the iron beads (IB) is blackish brown. Polyphenol and chlorogenic acid levels were reduced in IB extracts. Conclusions : The color of extract was change to blackish brown, and polyphenol and chlorogenic acid levels were reduced in CL extract with iron. Therefore, iron pots is not suitable for CL extraction.

ATTACHMENT AND PROLIFERATION OF HUMAN GINGIVAL FIBROBLASTS ON THE IMPLANT ABUTMENT MATERIALS (임플랜트 지대주 재료에 대한 치은 섬유아세포의 반응)

  • Lim Hyun-Pil;Kim Sun-Hun;Park Sang-Won;Yang Hong-So;Vang Mong-Sook;Park Ha-Ok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.1
    • /
    • pp.112-123
    • /
    • 2006
  • Purpose: The biocompatibility and bio-adhesive property of a dental implant abutment are important for proper soft tissue healing and maintenance of osseointegration of implant. However, studies of soft tissue healing and mucosal attachment of various materials of implant abutment other than titanium are still needed. In this study, cell attachment, proliferation, cytotoxicity of human gingival fibroblast for ceramic, gold alloy, Ni-Cr alloy and, commercially available pure titanium as a control were evaluated, using MTS and scanning electron microscopy. Materials and Methods: Specimen was designed to disc, 4mm diameter and 1mm thickness, made of ceramic, gold alloy, Ni-Cr alloy and commercially available pure titanium. Primary culture of human gingival fibroblasts were grown in Dulbecco's modified Eagle's medium with 10% fetal bovine serum and 1% antibiotics. Cells were inoculated in the multiwell plates placed the specimen disc. Cell Titer 96 AQucous One Solution Cell Proliferation Assay were done after 1hour 3hours, 24hours, 3days, 5days of incubation. The discs were processed for scanning electron micrography to evaluate cell attachment and morphologic change. Results: The results were obtained as fellows. 1. The ceramic showed high cell attachment and proliferation and low cytotoxicity, which is as much bioadhesive and biocompatible as titanium. 2. The gold alloy represented limited proliferation of human gingival fibroblast and the highest cytotoxicity among tested materials (p<0.05). 3. The Ni-Cr alloy limited the proliferaion of the human gingival fibroblast compared to titanium(p<0.05) but cytotoxicity on the bottom of well was not so considerable, compared to titanium. 4. On the scanning electron micrographs , the ceramic showed good attachment and proliferation of human gingival fibroblast, which was similar to titanium. But gold alloy and Ni-Cr alloy showed the shrinkage of gingival fibroblast both after 24 hours and 3 days. On 5th day, small amount of the human gingival fibroblast proliferation was observed on the Ni-Cr alloy, while the shrinkage of gingival fibroblast was still observed on the gold alloy. Conclusions: These results suggest that the ceramic abutment is as biocompatible as titanium to make proper mucosal seal. The gold alloy has a high cytotoxicity to limit proliferation of gingival fibroblast, which suggest limited use on the anterior tooth where soft tissue healing is recommeded.

Infrared Scanning Near-Field Optical Microscopy (IR-SNOM) Below the Diffraction Limit

  • Sanghera, J.S.;Aggarwal, I.D.;Cricenti, A.;Generossi, R.;Luce, M.;Perfetti, P.;Margoritondo, G.;Tolk, N.;Piston, D.
    • Ceramist
    • /
    • v.10 no.3
    • /
    • pp.55-66
    • /
    • 2007
  • Infrared Scanning Near-field Optical Microscopy (IR-SNOM) is an extremely powerful analytical instrument since it combines IR spectroscopy's high chemical specificity with SNOM's high spatial resolution. In order to do this in the infrared, specialty chalcogenide glass fibers were fabricated and their ends tapered to generate SNOM probes. The fiber tips were installed in a modified near field microscope and both inorganic and biological samples illuminated with the tunable output from a free-electron laser located at Vanderbilt University. Both topographical and IR spectral images were simultaneously recorded with a resolution of ${\sim}50\;nm$ and ${\sim}100\;nm$, respectively. Unique spectroscopic features were identified in all samples, with spectral images exhibiting resolutions of up to ${\lambda}/60$, or at least 30 times better than the diffraction limited lens-based microscopes. We believe that IR-SNOM can provide a very powerful insight into some of the most important bio-medical research topics.

  • PDF

The restoration-method of contaminated ground process and investigation (오염지반 복원공법분석 및 고찰)

  • Noh, Si-Weon;Youn, Jun-Young;Lee, Yeong-Saeng
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.615-620
    • /
    • 2010
  • In this paper, conventional biological treatment methods to compensate for the shortcomings bio-Ceramic -technology to develop fusion as a preliminary step of the analysis and review process to restore contaminated soil and BTEX (benzene, toluene, ethylbenzene, xylene) contaminated by Soil physical and mechanical properties were analyzed. As a result, pollution levels and other contaminants by supporting the sample tests carried out by mechanical properties testing, and the difference between unpolluted soil were compared.

  • PDF

Design and Characteristics of valveless micro-pump for small liquid delivery (미소유체 밸브리스 압전펌프의 설계 및 특성)

  • Lim, Jong-Nam;Oh, Jin-Heon;Lim, Kee-Joe;Kim, Hyun-Hoo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1275_1276
    • /
    • 2009
  • Micropump is very useful component in micro/nano fluidics and bioMEMS applications. Using the flexural vibration mode of PZT bar, a piezopump is successfully made. The PZT bar is polarized with thickness direction. The proposed structure for the piezo-pump consists of an input and an output port, piezoelectric ceramic actuator, actuator support, diaphragm. The traveling flexural wave along the bar is obtained by dividing two standing waves which are temporally and spatially phase shifted by 90 degrees from each other. Fluid is drawn into a forming chamber, eventually the forming chamber closes trapping the fluid therein.

  • PDF

Fabrication of Composite Drug Delivery System Using Nano Composite Deposition System and in vivo Characterization

  • Chu, Won-Shik;Jeong, Suk-Yong;Pandey, Jitendra Kumar;Ahn, Sung-Hoon;Lee, Jae-Hoon;Chi, Sang-Cheol
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.2
    • /
    • pp.81-83
    • /
    • 2008
  • The Rapid Prototyping (RP) technology has advanced in many application areas. In this research, two different types, cylinder and scaffold, of implantable Drug Delivery System (DDS) were fabricated using Nano Composite Deposition System (NCDS), one of the RP systems. The anti-cancer drug (5-fluorouracil, 5-FU), biodegradable polymer (PLGA(85: 15)), and bio ceramic (Hydroxyapatite, HA) were used to form drug-polymer composite material. Both types of DDS were evaluated in vivo environment for two weeks. For evaluation, the cumulative drug release and shape stability were measured. Test results showed that the scaffold DDS provide higher cumulative drug release and has better stability than cylinder DDS.

1차원 무기 반도체 신 물질 재료의 연구 개발 동향

  • Ryu, Hak-Gi
    • Ceramist
    • /
    • v.21 no.2
    • /
    • pp.29-37
    • /
    • 2018
  • In order to overcome the problems of existing low-dimensional materials (carbon nanotubes, graphene, transition metal dichalcogenides, etc) researches on new 1D materials have been studied. In the case of $LiMo_3Se_3$ and $Mo_6S_{9-x}I_x$, continuous researches have been carried out for 3D bulk synthesis and atomic scale dispersion. Recently, quantum confinement effect of $LiMo_3Se_3$ and bio-stability of $Mo_6S_{9-x}I_x$ have been proven and various applications have started to be studied. In addition, device application results using new 1D materials such as $Sb_2Se_3$ (optoelectronic devices using the property of effectively reducing exciton decay due to no dangling bond) and $VS_4$ (electrochemical energy storage using the space between 1-D nanostructures) have been reported very importantly. Therefore, it can be claimed that it has reached a very important time to find and synthesize new 1D materials and to report various characteristics not existing.

SWIR 이미지 센서 기술개발 동향 및 응용현황

  • Lee, Jae-Ung
    • Ceramist
    • /
    • v.21 no.2
    • /
    • pp.59-74
    • /
    • 2018
  • Imaging in the Short Wave Infrared (SWIR) provides several advantages over the visible and near-infrared regions: enhanced image resolution in in foggy or dusty environments, deep tissue penetration, surveillance capabilities with eye-safe lasers, assessment of food quality and safety. Commercially available SWIR imagers are fabricated by integrating expensive epitaxial grown III-V compound semiconductor sensors with Si-based readout integrated circuits(ROIC) by indium bump bonding Infrared image sensors made of solution-processed quantum dots have recently emerged as candidates for next-generation SWIR imagers. They combine ease of processing, tunable optoelectronic properties, facile integration with Si-based ROIC and good performance. Here, we review recent research and development trends of various application fields of SWIR image sensors and nano-materials capable of absorption and emission of SWIR band. With SWIR sensible nano-materials, new type of SWIR image sensor can replace current high price SWIR imagers.

Nanoparticle based Wearable Sensor (나노입자 기반의 웨어러블 센서)

  • Woo, Ho Kun;Ahn, Junhyuk;Oh, Soong ju
    • Ceramist
    • /
    • v.22 no.1
    • /
    • pp.4-16
    • /
    • 2019
  • Recently, wearable sensors have received considerable attention in a variety of research fields and industries as the importance of wearable healthcare systems, soft robotics and bio-integrated devices increased. However, expensive and complex processes are hindering the commercialization of wearable sensors. Nanoparticle presents some of solutions to these problems as its adjustable for processability and tunable properties. In this paper, the recent development of nanoparticle based pressure and strain sensors was reviewed, and a discussion on their strategies to overcome the conventional limitation and operating principles is presented.