• Title/Summary/Keyword: Bio-analysis

Search Result 3,811, Processing Time 0.032 seconds

Effects of Bio-Ion Water on Growth Performance, Blood Characteristics and Meat Quality in Growing and Finishing Pigs (Bio 이온수 급여가 비육돈의 성장, 혈액성상 및 육질 특성에 미치는 영향)

  • Jung, Eun-Young;Kim, Gap-Don;Seo, Hyun-Woo;Yang, Han-Sul;Kim, Sam-Churl
    • Journal of agriculture & life science
    • /
    • v.45 no.1
    • /
    • pp.67-77
    • /
    • 2011
  • This study was conducted to investigate the effects of bio-ion water on growth performance, blood characteristics and meat quality in pigs. Ninety nine crossbreed pigs $(Landrace{\times}Yorkshire{\times}Duroc)$ were randomly allotted to three treatments; CON (basal diet), T1 (basal diet with bio ion water from growing period), T2 (basal diet with bio ion water from finishing period). There were no significant differences in growth performance and carcass characteristics of pigs among treatments. The red blood cell and white blood cell were significantly higher (P<0.05) in diet added with bio ion water than the control. Proximate analysis (%), meat color, pH, drip loss (%), cooking loss (%) and shear force $(kg/cm^{2})$ were not significantly different (P>0.05) among treatments. The treatment 1 had lower saturated fatty acid (SFA) to unsaturated fatty acid ratio, but higher UFA concentration than those of control. The aroma of cooked meat in T1 was higher than other treatments. Thereby, overall acceptability sensory score of cooked meat in T1 tended to be higher than other treatments.

Analysis of Expressed Sequence Tags from the Red Alga Griffithsia okiensis

  • Lee, Hyoung-Seok;Lee, Hong-Kum;An, Gyn-Heung;Lee, Yoo-Kyung
    • Journal of Microbiology
    • /
    • v.45 no.6
    • /
    • pp.541-546
    • /
    • 2007
  • Red algae are distributed globally, and the group contains several commercially important species. Griffithsia okiensis is one of the most extensively studied red algal species. In this study, we conducted expressed sequence tag (ESTs) analysis and synonymous codon usage analysis using cultured G. okiensis samples. A total of 1,104 cDNA clones were sequenced using a cDNA library made from samples collected from Dolsan Island, on the southern coast of Korea. The clustering analysis of these sequences allowed for the identification of 1,048 unigene clusters consisting of 36 consensus and 1,012 singleton sequences. BLASTX searches generated 532 significant hits (E-value <$10^{-4}$) and via further Gene Ontology analysis, we constructed a functional classification of 434 unigenes. Our codon usage analysis showed that unigene clusters with more than three ESTs had higher GC contents (76.5%) at the third position of the codons than the singletons. Also, the majority of the optimal codons of G. okiensis and Chondrus crispus belonging to Bangiophycidae were G-ending, whereas those of Porphyra yezoensis belonging to Florideophycidae were G-ending. An orthologous gene search for the P. yezoensis EST database resulted in the identification of 39 unigenes commonly expressed in two rhodophytes, which have putative functions for structural proteins, protein degradation, signal transduction, stress response, and physiological processes. Although experiments have been conducted on a limited scale, this study provides a material basis for the development of microarrays useful for gene expression studies, as well as useful information for the comparative genomic analysis of red algae.

A Study on the Development of Industrial Clusters in the International Science and Business Belt through the Industrial Clustering Analysis (산업 클러스터링 분석을 통한 국제과학비즈니스벨트의 클러스터 발전 방향 연구)

  • Jung, Hye-Jin;Og, Joo-Young;Kim, Byung-Keun;Ji, Il-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.370-379
    • /
    • 2018
  • The Korean government announced plans for the International Science Business Belt as a spatial area for promoting the linkage between scientific knowledge and commercialization in 2009. R&D and entrepreneurial activities are essential for the success of the International Science Business Belt. In particular, prioritizing the types of businesses is critical at the cluster establishment stage in that this largely affects the features and development of clusters comprising the International Science Business Belt. This research aims to predict the entry and growth of firms that specialize in four industrial clusters, including Big Science Cluster, Frontier Cluster, ICT Cluster, and Bio-Healthcare Cluster. For this purpose, we employ the Swann & Prevezer's industrial clustering model to identify sectors that affect the establishment and growth of industrial clusters in the International Science Business Belt, focusing on ICT, Bio-Healthcare and Frontier clusters. Data was collected from the 2014 Korean Innovation Survey (KIS) and University Alimi for the ICT cluster, 2014 National Bio Industry Survey and University Alimi for the Bio-Healthcare Cluster, and the 2015 National Nano Convergent Industry Survey and Annual Report of Nano Technology for the Frontier cluster. Empirical results show that the ICT service sector, bio process/equipment sector, and Nano electronic sector promote clustering in other sectors. Based on the analysis results, we discuss several policy implications and strategies that can attract relevant firms for the development of industrial clusters.

Characteristics of the Co-Combustion of Coal and Bio-Solid Fuel using Biomass as an adjunct (석탄과 보조제로 바이오매스를 사용한 바이오 고형연료의 혼소 특성)

  • Hyeon, Wan-Su;Jin, Yong-Gyun;Jo, Eun-Ji;Han, Hyun-Goo;Min, Seon-Ung;Yeo, Woon-Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.28 no.2
    • /
    • pp.49-57
    • /
    • 2020
  • Due to the sewage sludge's characteristics of high water content and low calorific value, it is hard to use sewage sludge as an energy source. In this study, we investigated production of bio-solid fuel which is mixed both sewage sludge and woody biomass in order to improve the sewage sludge's characteristics and replace fossil fuels. A thermogravimetric analysis was used to investigate the co-combustion characteristics of the mixed coal and bio-solid fuel of 5%, 10%, 15%, respectively. The analysis was carried out under non-isothermal conditions by raising the internal temperature of 25℃ to 900℃ with an increment of 10℃/min. In the case of comparing single coal sample and mixture sample of coal and bio-solid fuel, the initiation combustion temperature has slightly changed. However, both the maximum combustion temperature and the termination start combustion temperature were hardly noticeable. The initiation combustion was occurred between 200~315℃ and the thermal decomposition causing a significant weight change occurred between 350~700℃. As a result of the kinetic analysis of the co-combustion, the activation energy was decreased as the mixing rate was higher. Therefore, it is able to co-combust the mixed coal and bio-solid fuel in power plants.

Optimization of Indole-3-Acetic production by phosphate solubilization bacteria isolated from waste mushroom bed of Agaricus bisporus

  • Walpola, Buddhi Charana;Noh, Jae-Geun;Kim, Chan Kyem;Kyung, Ki-Cheon;Kong, Won-Sik;Yoon, Min-Ho
    • Journal of Mushroom
    • /
    • v.11 no.2
    • /
    • pp.53-62
    • /
    • 2013
  • A total of 35 phosphate solubilizing bacterial strains were isolated from waste mushroom bed of Agaricus bisporus in Buyeo-Gun, Chungnam and screened for the production of indole acetic acid (IAA). The best IAA producing strain was identified as Pantoea rodasii using 16S rRNA analysis. In addition to the IAA production, this strain could act as an efficient phosphate solubilizer (1100 ${\mu}g$ $ml^{-1}$ after 5 days of incubation) also. The selected strain was cultured under different conditions in order to assess the optimum conditions for maximum IAA production. The nutrient broth (NB) medium was recorded as the best medium, where the maximum IAA production (229 ${\mu}g$ $ml^{-1}$) was recorded at the start of stationary phase (12 hours after inoculation) of the bacteria growth. The performance of the strain was found to be maximum at the temperature of $30^{\circ}C$ followed by $25^{\circ}C$. IAA production was found to be increased with increasing tryptophan concentration (from 0.1 to 0.6%), however beyond this limit, a slight reduction in IAA production was observed. The strains' ability to produce IAA was further confirmed by extraction of crude IAA and subsequent TLC analysis. A specific spot from the extracted IAA preparation was found corresponding with the standard spot of IAA with same $R_f$ value. The results of HPLC analysis conducted in identifying and quantifying the IAA production more precisely, are in agreement with the results of the assessment done with colorimetric method. As revealed by the results of the pot experiment, the isolated strain could significantly enhance the growth (as measured by shoot and root growth) of mung bean plants compared to that of non-inoculated plants. Therefore it can be concluded that the present strain, Pantoea rodasii has great potential to be used as bio-inoculants.

Molecular Cloning and Characterization of a Gene for Cyclodextrin Glycosyltransferase from Bacillus sp. E1 (Bacillus sp. E1 의 cyclodextrin 생산효소 유전자 분리 및 구명)

  • Yong, Jeong-Sik;Choi, Jin-Nam;Park, Sung-Soon;Park, Cheon-Seok;Park, Kwan-Hwa;Choi, Yang-Do
    • Applied Biological Chemistry
    • /
    • v.40 no.6
    • /
    • pp.495-500
    • /
    • 1997
  • To isolate a gene for cyclodextrin glycosyltransferase (CGTase) from alkalophilic Bacillus sp. E1, polymerase chain reaction (PCR) amplification was carried out. Direct molecular cloning of 1.2 kbp fragment and partial nucleotide sequence analysis of the PCR amplified clone, pH12, showed close homology with CGTases from Bacillus species. To investigate the genomic structure of the gene, Southern blot analysis of genomic DNA was carried out with the clone pH12 as a molecular probe. It showed that 5.3 kbp XbaI fragment was hybridized with the probe pH12. To isolate a genomic clone, genomic DNA library was constructed and a genomic clone for CGTase, pCGTE1, was isolated. Nucleotide sequence analysis of the clone pCGTE1 revealed that BCGTE1 contained 2,109 bp open reading frame encoding a polypeptide of 703 amino acids and showed over 94.3% amino acid sequence homology with CGTase of ${\beta}-cyclodextrin$ producer, Bacillus sp. KC201.(Received October 7, 1997; accepted October 20, 1997)

  • PDF

Immuno-chromatographic Analysis for HPV-16 and 18 E7 Proteins as a Biomarker of Cervical Cancer Caused by Human Papillomavirus

  • Kim, Joo-Ho;Cho, Il-Hoon;Seo, Sung-Min;Kim, Ji-Sook;Oh, Kyu-Ha;Kang, Heun-Soo;Kim, In-Gyu;Paek, Se-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.12
    • /
    • pp.2999-3005
    • /
    • 2009
  • Among the more than 120 different types of human papillomavirus (HPV), types 16 and 18 have been known to be high risk agents that cause cervical cancer. We examined, in an immuno-chromatographic analysis, the potential of using the early gene product, E7 protein, as a diagnostic marker of cervical cancer caused by HPV. We developed monoclonal antibodies specific to HPV-16 and 18 E7 proteins that were produced from bacterial cells using gene recombinant technology. For each E7 protein, the optimal antibody pair was selected using the immuno-chromatographic sandwichtype binding system based on the lateral flow through membrane pores. Under these conditions, this rapid testing assay had a detection capability as low as 2 ng/mL of E7 protein. Furthermore, since viral analysis required the host cell to be lysed using chemicals such as detergents, it was possible that the E7 protein was structurally damaged during this process, which would result in a decrease in detection sensitivity. Therefore, we examined the detrimental effects caused by different detergents on the E7 protein using HeLa cells as the host. In these experiments, we found that the damage caused by the detergent, nonylphenylpolyethylene glycol (NP-40), was minimal relative to Triton X-100 commonly used for the cell lysis. Temperature also affected the stability of the E7 protein, and we found that the E7 protein was stabilized at 4$^{\circ}C$ for about 2 h, which was 4 times longer than at room temperature. Finally, a HPV-infected cervical cancer cell line, which was used as a real sample model, was treated using the optimized conditions and the presence of E7 proteins were analyzed by immuno-chromatography. The results of this experiment demonstrated that this rapid test could specifically detect HPV-infected samples.

Properties of Quercus variabilis bio-oil prepared by sample preparation (시료 조건에 따른 굴참나무 바이오오일의 특성)

  • Chea, Kwang-Seok;Jo, Tae-Su;Choi, Seok-Hwan;Lee, Soo-Min;Hwang, Hye-Won;Choi, Joon-Weon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.148-156
    • /
    • 2015
  • In this study the differences in the sample size and sample input changes as characteristics of bio-oil oak(Quercus variabilis), the oak 0.5~2.0 mm of the oak weighing 300~900g was processed into bio-oil via fast pyrolysis for 1.64 seconds. In this study, the physico-chemical properties of biooil using oak were investigated. Fast pyrolysis was adopted to increase the bio-oil yield from raw material. Although the differences in sample size and sample input changes in the yield of pyrolysis products were not significantly noticeable, increases in the yield of bio-oil accounted for approximately 60.3 to 62.1%, in the order of non-condensed gas, and biochar. When the primary bio-oil obtained by the condensation of the cooling tube and the seconary bio-oil obtained from the electric dust collector were measured separately, the yield of primary bio-oil was twice as higher than that of the secondary bio-oil. However, HHV (Higher Heating Value) of the secondary bio-oil was approximately twice as higher than that of the primary bio-oil by up to 5,602 kcal/kg. The water content of the primary bio-oil was more than 20% of the moisture content of the secondary bio-oil, which was 10% or less. In addition, the result of the elemental analysis regarding the secondary bio-oil, its primary carbon content was higher than that of the primary bio-oil, and since the oxygen content is low, the water content as well as elemental composition are believed to have an effect on the calorific value. The higher the storage temperature or the longer the storage period, the degree of the viscosity of the secondary bio-oil was higher than that of the primary bio-oil. This can be the attributed to the chemical bond between the polymeric bio-oil that forms during the storage period.

Investigation of Conserved Genes in Microorganism (미생물의 보존적 유전자 탐색)

  • Lee Dong-Geun;Lee Jae-Hwa;Lee Sang-Hyeon;Ha Bae-Jin;Shim Doo-Hee;Park Eun-Kyung;Kim Jin-Wook;Li Hua-Yue;Nam Chun-Suk;Kim Nam Young;Lee Eo-Jin;Back Jin-Wook;Ha Jong-Myung
    • Journal of Life Science
    • /
    • v.15 no.2 s.69
    • /
    • pp.261-266
    • /
    • 2005
  • To figure out conserved genes in 66 microbial species and measuring the degree of conservation, analyses based on COG (Clusters of Orthologous Groups of proteins) algorithm were applied. Sixty-six microbial genomes, including three eukaryotes, hold 63 conserved orthologs in common. The majority $(82.5\%)$ of the conserved genes was related to translation, meaning the importance of protein in living creatures. Ribosomal protein S12 (COG0048) and L14 (COG0093) were more conserved genes than others from the distance value analysis. Phylogenetically related microbes grouped in genome analysis by average and standard deviation of 63 conserved genes. The 63 conserved genes, found in this research, would be useful in basic research and applied ones such as antibiotic development.

Relationship between porcine miR-20a and its putative target low-density lipoprotein receptor based on dual luciferase reporter gene assays

  • Ding, Yueyun;Zhu, Shujiao;Wu, Chaodong;Qian, Li;Li, DengTao;Wang, Li;Wan, Yuanlang;Zhang, Wei;Yang, Min;Ding, Jian;Wu, Xudong;Zhang, Xiaodong;Gao, Yafei;Yin, Zongjun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.7
    • /
    • pp.922-929
    • /
    • 2019
  • Objective: Mutations in low-density lipoprotein receptor (LDLR), which encodes a critical protein for cholesterol homeostasis and lipid metabolism in mammals, are involved in cardiometabolic diseases, such as familial hypercholesterolemia in pigs. Whereas microRNAs (miRNAs) can control LDLR regulation, their involvement in circulating cholesterol and lipid levels with respect to cardiometabolic diseases in pigs is unclear. We aimed to identify and analyze LDLR as a potential target gene of SSC-miR-20a. Methods: Bioinformatic analysis predicted that porcine LDLR is a target of SSC-miR-20a. Wild-type and mutant LDLR 3'-untranslated region (UTR) fragments were generated by polymerase chain reaction (PCR) and cloned into the pGL3-Control vector to construct pGL3 Control LDLR wild-3'-UTR and pGL3 Control LDLR mutant-3'-UTR recombinant plasmids, respectively. An miR-20a expression plasmid was constructed by inserting the porcine premiR-20a-coding sequence between the HindIII and BamHI sites in pMR-mCherry, and constructs were confirmed by sequencing. HEK293T cells were co-transfected with the miR-20a expression or pMR-mCherry control plasmids and constructs harboring the corresponding 3'-UTR, and relative luciferase activity was determined. The relative expression levels of miR-20a and LDLR mRNA and their correlation in terms of expression levels in porcine liver tissue were analyzed using reverse-transcription quantitative PCR. Results: Gel electrophoresis and sequencing showed that target gene fragments were successfully cloned, and the three recombinant vectors were successfully constructed. Compared to pMR-mCherry, the miR-20a expression vector significantly inhibited wild-type LDLR3'-UTR-driven (p<0.01), but not mutant LDLR-3'-UTR-driven (p>0.05), luciferase reporter activity. Further, miR-20a and LDLR were expressed at relatively high levels in porcine liver tissues. Pearson correlation analysis revealed that porcine liver miR-20a and LDLR levels were significantly negatively correlated (r = -0.656, p<0.05). Conclusion: LDLR is a potential target of miR-20a, which might directly bind the LDLR 3'-UTR to post-transcriptionally inhibit expression. These results have implications in understanding the pathogenesis and progression of porcine cardiovascular diseases.