• Title/Summary/Keyword: Bio-adsorption

Search Result 153, Processing Time 0.024 seconds

Effects of Plasma on the Surface of Protein Chip Plates (단백질 칩 기판의 플라즈마 효과)

  • Hyun, J.W.;Kim, N.Y.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.6
    • /
    • pp.549-554
    • /
    • 2008
  • Nickel Chloride coated protein chip plates were developed by using a spin coating method after $H_2$ plasma treatment. The adsorption ability of histidine tagged protein was investigated at various times of plasma treatment. The properties of the nickel chloride and protein on the surface of the slides were assayed using particle size analysis and the extent of the protein adsorption was determined by using a bio imaging analyzer system. The results show that the ability of protein adsorption decreased as increasing the time of $H_2$ plasma treatment. The mechanism on the ability of protein adsorption at the plate surface is discussed on results and discussions. The results also suggest that the surface stabilization of protein chip plates treated by plasma technology may be applicable in biosensor markets.

Synthesis and studies on novel Copper adenine MOF for $CO_2$ adsorption (이산화탄소 흡착용 구리 아데닌 MOF 합성 및 연구)

  • Ganesh, Mani;Hemalatha, Pushparaj;Peng, Mei Mei;Kim, Dae-Kyung;Jang, Hyun-Tae
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.12a
    • /
    • pp.357-360
    • /
    • 2011
  • A new copper adenine MOF (Bio-MOF) was synthesized by hydrothermal procedure and explored for its low temperature $CO_2$ adsorption. In this adenine a DNA nucleotide was used as a ligand for Cu in DMF solution at $130^{\circ}C$. The synthesized Bio MOF was characterized by XRD, SEM, EDS, TG and BE Tresults. The material possesses high surface area (716.08 $m^2g^{-1}$) with mono dispersed particles of about 2.126 nm. The maximum $CO_2$ adsorption capacity is 5wt% at $50^{\circ}C$, which is regenerable at $100^{\circ}C$ which is very low when compared to other metal organic frame work studied. This study proves that the synthesized material is also be a choice materials for low temperature $CO_2$adsorption.

  • PDF

A Preliminary Study on Evaluation of TimeDependent Radionuclide Removal Performance Using Artificial Intelligence for Biological Adsorbents

  • Janghee Lee;Seungsoo Jang;Min-Jae Lee;Woo-Sung Cho;Joo Yeon Kim;Sangsoo Han;Sung Gyun Shin;Sun Young Lee;Dae Hyuk Jang;Miyong Yun;Song Hyun Kim
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.4
    • /
    • pp.175-183
    • /
    • 2023
  • Background: Recently, biological adsorbents have been developed for removing radionuclides from radioactive liquid waste due to their high selectivity, eco-friendliness, and renewability. However, since they can be damaged by radiation in radioactive waste, a method for estimating the bio-adsorbent performance as a time should consider the radiation damages in terms of their renewability. This paper aims to develop a simulation method that applies a deep learning technique to rapidly and accurately estimate the adsorption performance of bio-adsorbents when inserted into liquid radioactive waste. Materials and Methods: A model that describes various interactions between a bio-adsorbent and liquid has been constructed using numerical methods to estimate the adsorption capacity of the bio-adsorbent. To generate datasets for machine learning, Monte Carlo N-Particle (MCNP) simulations were conducted while considering radioactive concentrations in the adsorbent column. Results and Discussion: Compared with the result of the conventional method, the proposed method indicates that the accuracy is in good agreement, within 0.99% and 0.06% for the R2 score and mean absolute percentage error, respectively. Furthermore, the estimation speed is improved by over 30 times. Conclusion: Note that an artificial neural network can rapidly and accurately estimate the survival rate of a bio-adsorbent from radiation ionization compared with the MCNP simulation and can determine if the bio-adsorbents are reusable.

XRD Patterns and Bismuth Sticking Coefficient in $Bi_2Sr_2Ca_nCu_{n+1}O_y(n\geq0)$ Thin Films Fabricated by Ion Beam Sputtering Method

  • Yang, Seung-Ho;Park, Yong-Pil
    • Journal of information and communication convergence engineering
    • /
    • v.4 no.4
    • /
    • pp.158-161
    • /
    • 2006
  • [ $Bi_2Sr_2Ca_nCu_{n+1}O_y(n{\geq}0)$ ] thin film is fabricatedvia two different processes using an ion beam sputtering method i.e. co-deposition and layer-by-layer deposition. A single phase of Bi2212 can be fabricated via the co-deposition process. While it cannot be obtained by the layer-by-layer process. Ultra-low growth rate in our ion beam sputtering system brings out the difference in Bi element adsorption between the two processes and results in only 30% adsorption against total incident Bi amount by layer-by-layer deposition, in contrast to enough Bi adsorption by co-deposition.

Hydrogen Storage by Carbon Fibers Synthesized by Pyrolysis of Cotton Fibers

  • Sharon, Maheshwar;Sharon, Madhuri;Kalita, Golap;Mukherjee, Bholanath
    • Carbon letters
    • /
    • v.12 no.1
    • /
    • pp.39-43
    • /
    • 2011
  • Synthesis of carbon fibers from cotton fiber by pyrolysis process has been described. Synthesis parameters are optimized using Taguchi optimization technique. Synthesized carbon fibers are used for studying hydrogen adsorption capacity using Seivert's apparatus. Transmission electron microscopy analysis and X-ray diffraction of carbon fiber from cotton suggested it to be very transparent type material possessing graphitic nature. Carbon synthesized from cotton fibers under the conditions predicted by Taguchi optimization methodology (no treatment of cotton fiber prior to pyrolysis, temperature of pyrolysis $800^{\circ}C$, Argon as carrier gas and paralyzing time for 2 h) exhibited 7.32 wt% hydrogen adsorption capacity.

Adsorption Equilibrium Moisture Content of Rough Rice, Brown Rice, White Rice and Rice Hull (벼, 현미, 백미 및 왕겨의 흡습평형함수율)

  • Keum, D. H.;Kim, H.
    • Journal of Biosystems Engineering
    • /
    • v.26 no.1
    • /
    • pp.57-66
    • /
    • 2001
  • This study was performed to determine adsorption equilibrium moisture contents of rough rice, brown rice, white rice and rice hull grown in Korea. EMC values were measured by static method using saturated salt solutions at three temperature levels of 20$\^{C}$, 30$\^{C}$ and 40$\^{C}$, and eight relative humidity levels in the range from 11.2% to 85.0%. The measured EMC values were fitted to modified Henderson, Chung-Pfost, and modified Oswin models by using nonlinear regression analysis. The results of comparing root mean square errors for three models showed that modified Henderson and Chung-Pfost models could serve as good models, and that modified Oswin model could not be applicable to rough rice, brown rice, white rice and rice hull.

  • PDF

Performance Evaluation of Modified Zeolite with Mg for the Treatment of Dyeing Wastewater (Mg으로 개질한 Zeolite를 이용하여 염색공장 폐수처리 평가)

  • Choi, Hee-Jeong
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.4
    • /
    • pp.392-398
    • /
    • 2015
  • The aim of this study was to investigate the bio-adsorption using modified zeolite with Mg (Mg-zeolite) in the dyeing wastewater treatment. Mg-zeolite adsorbed successfully 100% of the color, suspended solid (SS). chemical oxygen demand (COD), biological oxygen demand (BOD), total nitrogen (TN) and total phosphorus (TP) in the dyeing wastewater at the following optimal Mg-zeolite loading: 20 mg/L for colour, SS, TN and TP, 30 mg/L for BOD and COD. These results indicated that the amount of 1 mg/L Mg-zeolite adsorbed 11.6 mg/L for color, 9.5 mg/L for SS, 45.0 mg/L for COD, 12.7 mg/L for BOD, 0.91 mg/L for TP and 2.25 mg/L for TN. The bio-adsorbent, Mg-zeolite, can be a promising adsorption due to its high efficiency and low dose requirements.

Concentration/Purification Technologies: Multi-Functionalities of Nanostructures in Biosensing Fields

  • Son, Sang Jun;Min, Junhong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.87-87
    • /
    • 2013
  • Sample concentration and purification processes are essential in the bio-analytical and pharmaceutical fields because most bio samples or media are extremely sophisticated. To concentrate and purify specific substances, passive membrane type filters have been utilized, which is driven by size or charge differences between target and others. The traditional and representative method to identify nucleic acid sequences in the complex biosample is gel electrophoresis, which has been worked by size and net charge of molecules. The adsorption phenomena have been also utilized to concentrate and purify biomolecules. This adsorption of biomolecule can be controlled under specific salts and surfaces as well as surface area. To utilize the differences of physical properties of molecules or bio-targets such as virus, bacteria, and cells, the nanotechnologies can be introduced in target concentration, purification, and isolation processes. In here, I'd like to briefly survey typical examples of nanobiotechnologies which are introduced in sample treatment. Also I specifically demonstrate two different simple techniques to concentrate and detect bacteria from the samples using multifunctional silica nanotube (SNT).

  • PDF

Fabrication of Chitosan Nanoparticles with Lactococcus lactis for the Removal of Phthalate Endocrine Hormone (Phthalate계 환경호르몬 제거를 위한 Lactococcus lactis를 함유한 Chitosan Nanoparticles의 제조)

  • Yoon, Hee-Soo;Kang, Ik-Joong
    • Korean Chemical Engineering Research
    • /
    • v.59 no.1
    • /
    • pp.21-34
    • /
    • 2021
  • Chitosan nanoparticles (CNPs) and Lactococcus lactis (L. lac.) were used as adsorbents to evaluate the adsorption performance of endocrine hormones, which are phthalates, in the healthy food packages. CNPs were produced through the cross bond with tripolyphosphate (TPP), and L. lac.-CNPs were prepared through the introduction of L. lac. during the preparation. The various functional groups of all adsorbents were identified using Fourier transform infrared spectroscopy (FTIR). Adsorption isotherm and adsorption kinetic confirmed the adsorption behavior and mechanism of CNPs, L. lac. and L. lac.-CNPs. The adsorption behavior of DBP and DEP for all particles was more suitable for the Freundlich adsorption isotherm model than for the Langmuir adsorption isotherm model, which means that the surface of the particles is heterogeneous. The adsorption mechanism was more suitable for the Pseudo-2nd-order model than for the Pseudo-1st-order model. This means that due to the presence of various functional groups on the particle surface, the adsorption of DBP and DEP is dominated by chemical adsorption such as electrostatic attraction and hydrogen bonding rather than physical adsorption. Finally, it was confirmed that the preparation of CNPs and L. lac.-CNPs can be performed easily and quickly, and it could be used as a cheaper adsorbent that can effectively remove phthalates.

Purification and Structural Characterization of Glycolipid Biosurfactants from Pseudomonas aeruginoas YPJ-80

  • Park, Oh-Jin;Lee, Young-Eun;Cho, Joong-Hoon;Shin, Hyun-Jae;Yoon, Byung-Dae;Yang, Ji-Won
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.3 no.2
    • /
    • pp.61-66
    • /
    • 1998
  • Glycolipids produced by Pseudomonas aeruginosa YPJ-80 were characterized by chromatographic and spectorscopic techniques as a mixture of two rhamnolipids. For recovery of glycolipids from the culture broth, various isolation methods including ultrafiltration, adsorption and solvent extraction were compared. Ultrafiltration showed the best results in terms of glycolipids recovery. Further purification for spectroscopic analysis was carried out by adsorption chromatography and preparative thin layer chromatography. From the spectroscopic analysis, such as IR spectroscopy. FAB-MS, 1H-NMR and 13C-NMR and hydrolysis analysis, the glycolipids were identified as L-${\alpha}$-rhamnopyranosyl-${\beta}$-hydroxydecanoly-${\beta}$-hydroxydecanoate and 2-O-${\alpha}$-L-rhamnopyranosyl-${\alpha}$-L-rhamnopyranosyl-${\beta}$-hydroxydecanoyl-${\beta}$-hydroxydecanoate. Monorhamnolipid and dirhamnolipid lowered the surface tension of water to 28.1 mN/M and 29.3 mN/m, respectively.

  • PDF