• 제목/요약/키워드: Bio-Inspired Engineering

검색결과 129건 처리시간 0.025초

CrabBot: 이중 4절 링크를 활용한 꽃게 모사 8족 주행 로봇 (CrabBot: A Milli-Scale Crab-Inspired Crawling Robot using Double Four-bar Mechanism)

  • 차은엽;정순필;정광필
    • 로봇학회논문지
    • /
    • 제14권4호
    • /
    • pp.245-250
    • /
    • 2019
  • Milli-scale crawling robots have been widely studied due to their maneuverability in confined spaces. For successful crawling, the crawling robots basically required to fulfill alternating gait with elliptical foot trajectory. The alternating gait with elliptical foot trajectory normally generates both forward and upward motion. The upward motion makes the aerial phase and during the aerial phase, the forward motion enables the crawling robots to proceed. This simultaneous forward and upward motion finally results in fast crawling speed. In this paper, we propose a novel alternating mechanism to make a crab-inspired eight-legged crawling robot. The key design strategy is an alternating mechanism based on double four-bar linkages. Crab-like robots normally employs gear-chain drive to make the opposite phase between neighboring legs. To use the gear-chain drive to this milli-scale robot system, however, is not easy because of heavy weight and mechanism complexity. To solve the issue, the double-four bar linkages has been invented to generate the oaring motion for transmitting the equal motion in the opposite phase. Thanks to the proposed mechanism, the robot crawls just like the real crab with the crawling speed of 0.57 m/s.

기능형 의수를 위한 텐스그리티 관절 구조 기반의 유연하고 가벼운 로봇 핸드 개발 (Development of Flexible and Lightweight Robotic Hand with Tensegrity-Based Joint Structure for Functional Prosthesis)

  • 이건;최영진
    • 로봇학회논문지
    • /
    • 제19권1호
    • /
    • pp.1-7
    • /
    • 2024
  • This paper presents an under-actuated robotic hand inspired by the ligamentous structure of the human hand for a prosthetic application. The joint mechanisms are based on the concept of a tensegrity structure formed by elastic strings. These rigid bodies and elastic strings in the mechanism emulate the phalanx bones and primary ligaments found in human finger joints. As a result, the proposed hand inherently possesses compliant characteristics, ensuring robust adaptability during grasping and when interacting with physical environments. For the practical implementation of the tensegrity-based joint mechanism, we detail the installation of the strings and the routing of the driving tendon, which are related to extension and flexion, respectively. Additionally, we have designed the palm structure of the proposed hand to facilitate opposition and tripod grips between the fingers and thumb, taking into account the transverse arch of the human palm. In conclusion, we tested a prototype of the proposed hand to evaluate its motion and grasping capabilities.

바이오 데이터 분류화를 위한 BNP 내장 생태계 모방 알고리즘에 대한 연구 (A Study on Bio-inspired algorithm included BNP for Classification of Bio data)

  • 최옥주;맹보연;이민수
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2009년도 춘계학술발표대회
    • /
    • pp.294-297
    • /
    • 2009
  • 다방면적인 과학기술의 발달은 우리에게 대량의 데이터와 또한 새로운 영역으로의 접근 가능성을 열어주었다. 유전자 정보와 같은 대량의 정보를 다루는 시대가 열리면서 바이오 데이터를 분석하여 새로운 연관성과 정보를 찾아내는 바이오인포매틱스가 고부가가치 창출을 위한 학문으로 특히 부각되고 있다. 본 논문에서는 이러한 연구의 일환으로 보다 효율적인 바이오 데이터 분석을 위해 BNP에 내장된 생태계 모방 알고리즘의 특성을 연구하고, 이를 분류화에 접목시킨 방법에 대해 논하고자 한다.

소형 6족 주행 로봇의 페이로드와 다리 강성이 로봇의 주행 성능에 미치는 영향 (Effect of Leg Stiffness on the Running Performance of Milli-Scale Six-Leg Crawling Robot with Payload)

  • 채수환;백상민;이종은;임소정;유재관;조용진;조규진
    • 로봇학회논문지
    • /
    • 제14권4호
    • /
    • pp.270-277
    • /
    • 2019
  • Inspired by small insects, which perform rapid and stable locomotion based on body softness and tripod gait, various milli-scale six-legged crawling robots were developed to move rapidly in harsh environment. In particular, cockroach's leg compliance was resembled to enhance the locomotion performance of the crawling robots. In this paper, we investigated the effects of changing leg compliance for the locomotion performance of the small light weight legged crawling robot under various payload condition. First, we developed robust milli-scale six-leg crawling robot which actuated by one motor and fabricated in SCM method with light and soft material. Using this robot platform, we measured the running velocity of the robot depending on the leg stiffness and payload. In result, there was optimal range of the leg stiffness enhancing the locomotion ability at each payload condition in the experiment. It suggests that the performance of the crawling robot can be improved by adjusting stiffness of the legs in given payload condition.

다리 수 조절이 가능한 모듈러 크롤러의 설계 및 6족 로봇의 주행 성능 평가 (Modular Crawler with Adjustable Number of Legs and Performance Evaluation of Hexapod Robot)

  • 임소정;백상민;이종은;채수환;유재관;조용진;조규진
    • 로봇학회논문지
    • /
    • 제14권4호
    • /
    • pp.278-284
    • /
    • 2019
  • Legged locomotion has high mobility on irregular surfaces by touching the ground at discrete points. Inspired by the creature's legged locomotion, legged robots have been developed to explore unstructured environments. In this paper, we propose a modular crawler that can easily adjust the number of legs for adapting the environment that the robot should move. One module has a pair of legs, so the number of legs can be adjusted by changing the number of modules. All legs are driven by a single driving motor for simple and compact design, so the driving axle of each module is connected by the universal joint. Universal joints between modules enable the body flexion for steering or overcoming higher obstacles. A prototype of crawler with three modules is built and the driving performance and the effect of module lifting on the ability to overcome obstacles are demonstrated by the experiments.

A wireless impedance analyzer for automated tomographic mapping of a nanoengineered sensing skin

  • Pyo, Sukhoon;Loh, Kenneth J.;Hou, Tsung-Chin;Jarva, Erik;Lynch, Jerome P.
    • Smart Structures and Systems
    • /
    • 제8권1호
    • /
    • pp.139-155
    • /
    • 2011
  • Polymeric thin-film assemblies whose bulk electrical conductivity and mechanical performance have been enhanced by single-walled carbon nanotubes are proposed for measuring strain and corrosion activity in metallic structural systems. Similar to the dermatological system found in animals, the proposed self-sensing thin-film assembly supports spatial strain and pH sensing via localized changes in electrical conductivity. Specifically, electrical impedance tomography (EIT) is used to create detailed mappings of film conductivity over its complete surface area using electrical measurements taken at the film boundary. While EIT is a powerful means of mapping the sensing skin's spatial response, it requires a data acquisition system capable of taking electrical impedance measurements on a large number of electrodes. A low-cost wireless impedance analyzer is proposed to fully automate EIT data acquisition. The key attribute of the device is a flexible sinusoidal waveform generator capable of generating regulated current signals with frequencies from near-DC to 20 MHz. Furthermore, a multiplexed sensing interface offers 32 addressable channels from which voltage measurements can be made. A wireless interface is included to eliminate the cumbersome wiring often required for data acquisition in a structure. The functionality of the wireless impedance analyzer is illustrated on an experimental setup with the system used for automated acquisition of electrical impedance measurements taken on the boundary of a bio-inspired sensing skin recently proposed for structural health monitoring.

고분산성 Cr2O3 및 Co3O4 전이금속 나노입자 촉매가 기능화된 다공성 WO3 나노섬유를 이용한 구취진단용 화학센서 (Bio-inspired Cr2O3 and Co3O4 Nanoparticles Loaded Electrospun WO3 Nanofiber Chemical Sensor for Early Diagnosis of Halitosis)

  • 장지수;김상준;최선진;구원태;김일두
    • 센서학회지
    • /
    • 제25권3호
    • /
    • pp.223-228
    • /
    • 2016
  • In this work, we prepared porous WO3 nanofibers (NFs) functionalized by bio-inspired catalytic $Cr_2O_3$ and $Co_3O_4$ nanoparticles as highly sensitive and selective $H_2S$ gas sensing layers. Highly porous 3-dimensional (3D) NFs networks decorated by well-dispersed catalyst NPs exhibited superior $H_2S$ gas response ($R_{air}/R_{gas}$ = 46 at 5 ppm) in high humidity environment (95 %RH). In particular, the sensors showed outstanding $H_2S$ selectivity against other interfering analytes (such as acetone, toluene, CO, $H_2$, ethanol). Exhaled breath sensors using $Cr_2O_3$ and $Co_3O_4$ catalysts-loaded $WO_3$ NFs are highly promising for the accurate detection of halitosis.

생체모방기술을 접목한 파라미터 공간에서의 로봇제어 기법 (Robot Control Method in Parameter Space Adopting Biomimetics)

  • 김희중
    • 항공우주시스템공학회지
    • /
    • 제12권5호
    • /
    • pp.16-23
    • /
    • 2018
  • 본 논문에서는 생체모방기술을 적용한 로봇제어방법에 대해 기술한다 물방개의 유영동작을 모방하고 발생시키기 위해 푸리에 최소자승기법을 적용하여 일반식을 정립하였다. 일반식의 계수의 값을 조정하여 관측된 물방개의 유영동작과 발생시킨 모방동작의 비교를 통해 제어 파라미터가 정의되었으며 각 파라미터들의 상관관계를 밝히고 이를 파라미터 공간상에 표현하여 다양한 생체모방 동작을 쉽게 발생시킬 수 있음을 확인하였다. 추가로, 생물체의 구조적인 장점을 반영한 로봇설계에 대해 간략히 소개하였고 제안한 생체모방 발생기법은 다양한 환경에서의 로봇시스템 개발에 적용 가능함을 확인하였다.