• Title/Summary/Keyword: Bio material

Search Result 1,222, Processing Time 0.027 seconds

Analysis of Expressed Sequence Tags from the Embryogenic Callus of Korean Ginseng (Panax ginseng C.A. Meyer)

  • In, Jun-Gyo;Lee, Bum-Soo;Park, Yong-Eui;Yang, Deok-Chun
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2003.04a
    • /
    • pp.123-123
    • /
    • 2003
  • In order to study gene expression transcribted during the embryo development, we constructed a cDNA library of embryogenic callus induced from cotylendon of Korean ginseng and generated expressed sequence tags (ESTs) of 3,359 clones randomly selected. The ESTs could be clustered into 1,910 (59.1%) non-redundant groups. Similarity search of the non-redundant ESTs against public non-redundant databases of both protein and DNA indicated that 2,217 groups show similarity to genes of known function. These ESTs clones were divided into eighteen categories depending upon gene function. Most abundant transcripts were ribosomal protein small subunit 28kDa(40), tumor-related protein(35), metallothionein (31), small heat-shock protein class 18.6K(24), and cyclophilin(20). There are no useful informations of gene expression during the embryo development in Korean ginseng. These results could help to understand the embryo development in Korean ginseng.

  • PDF

Expression Analysis of ESTs Derived from the Four-Year Root of Chunpoong (Panax ginseng C.A. Meyer)

  • Yang, Deok-Chun;In, Jun-Gyo;Lee, Bum-Soo
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2003.04a
    • /
    • pp.121-121
    • /
    • 2003
  • Expressed sequence tags (EST) are help to quickly identify functions of expressed genes and to understand the complexity of gene expression. To assist genetic study of the root development in Panax ginseng, which is one of the most important medicinal plant, expressed sequence tags (EST) analysis was carried out. We constructed a CDNA library using the 4-year Chunpoon root. Partial sequences were obtained from 3,841 clone. The ESTs could be clustered into 2,056 (64%) non-redundant groups. Similarity search of the non-redundant ESTs against public non-redundant databases of both protein and DNA indicated that 1,498 groups show similarity to genes of known function. These ESTs clones were divided into eighteen categories depending upon gene function. The most abundant transcripts were major latex protein (41), ribonuclease 2 (36), metallothionein 2(35). Our extensive EST analysis of genes expressed in 4-year Chunpoong root not only contributes to the understanding of the dynamics of genome expression patterns in root organ development but also adds data to the repertoire of all genomic genes.

  • PDF

Effect of chemical in post Ru CMP Cleaning solutions on abrasive particle adhesion and removal (Post Ru CMP Cleaning에서 연마입자의 흡착과 제거에 대한 chemical의 첨가제에 따른 영향)

  • Kim, In-Kwon;Kim, Tae-Gon;Cho, Byung-Gwun;Son, Il-Ryong;Park, Jin-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.529-529
    • /
    • 2007
  • Ruthenium (Ru) is a white metal and belongs to platinum group which is very stable chemically and has a high work function. It has been widely studied to apply Ru as an electrode material in memory devices and a Cu diffusion barrier metal for Cu interconnection due to good electrical conductivity and adhesion property to Cu layer. To planarize deposited Ru layer, chemical mechanical planarization(CMP) was suggested. However, abrasive particle can induce particle contamination on the Ru layer surface during CMP process. In this study, zeta potentials of Ru and interaction force of alumina particles with Ru substrate were measured as a function of pH. The etch rate and oxidation behavior were measured as a function of chemical concentration of several organic acids and other acidic and alkaline chemicals. PRE (particle removal efficiency) was also evaluated in cleaning chemical.

  • PDF

Effect of Coffee Grounds on Mechanical Behavior of Poly Propylene Composites

  • Vinitsa Chanthavong;M. N. Prabhakar;Dong-Woo Lee;Jung-Il Song
    • Composites Research
    • /
    • v.36 no.4
    • /
    • pp.264-269
    • /
    • 2023
  • Spent coffee grounds (SCG) are a ubiquitous byproduct of coffee consumption, representing a significant waste management challenge, as well as an untapped resource for economic development and sustainability. Improper disposal of SCG can result in environmental problems such as methane emissions and leachate production. This study aims to investigate the physicochemical properties of SCG and their potential as a reinforcement material in polypropylene (PP) to fabricate an eco-friendly composite via extrusion and injection molding, with SCG filler ratios ranging from 5-20%. To evaluate the effect of SCG on the morphological and mechanical properties of the bio- composite, thermogravimetric analysis, SEM, tensile, flexural, and impact tests were conducted. The results demonstrated that the addition of SCG lead to a slight increase in brittleness of the composite but did not significantly affect its mechanical properties. Impressively, the presence of a significant organic component in SCG contributed to the enhanced thermal performance of PP/SCG composites. This improvement was evident in terms of increased thermal stability, delayed onset of degradation, and higher maximum degradation temperature as compared to pure PP. These findings suggest that SCG has potential as a filler material for PP composites, with the ability to enhance the material's properties without compromising overall performance.

A Study on the Development of Bamboo/PLA Bio-composites for 3D Printer Filament (3D 프린터 필라멘트 제작용 대나무/PLA 바이오복합재료 개발 연구)

  • Shin, Yoon Jung;Yun, Hyeon Ju;Lee, Eun Ju;Chung, Woo Yang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.1
    • /
    • pp.107-113
    • /
    • 2018
  • In this study, the 3D printer filaments were manufactured by using the representative eco-friendly material, bio-composite. Bio-composites were made by incorporating biodegradable polymer of poly lactic acid (PLA) as the matrix and bamboo flour as the filler. The bamboos which were used in this experiment are Phyllostachys bambusoides, Phyllostachys nigra var. henonis, and Phyllostachys pubescen grown in Damyang district in Korea, and the mixture ratio between bamboo flour and PLA were set 10/90, 20/80, 30/70 by weight standard. Also, tensile strength of bamboo/PLA bio-composites manufactured with three kinds of bamboo were estimated and compared. In this result, the highest estimated bio-composites was Phyllostachys bambusoides flour/PLA which mixture ratio was 10/90, that is, it was the most suitable bamboo/PLA bio-composites for manufacturing 3D printer filament.

Cloning and Biochemical Characterization of Aspartate Aminotransferase from Xanthomonas oryzae pv. oryzae (Xanthomonas oryzae pv. oryzae로 부터 aspartate aminotransferase 유전자의 분리 및 생화학 특성)

  • Kang, Han-Chul;Yoon, Sang-Hong;Lee, Chang-Mook
    • Journal of Applied Biological Chemistry
    • /
    • v.52 no.3
    • /
    • pp.109-115
    • /
    • 2009
  • The gene encoding a putative aspartate aminotransferase in Xanthomonas oryzae pv. oryzae (Xoo) was cloned using PCR technique. The gene was ligated with pET-21(a) vector containing His6 tag and expressed in E. coli BL21(DE3). Affinity purification of the recombinant aspartate aminotransferase with Ni-NTA resin resulted in one band by SDS-PAGE analysis. The purified enzyme showed a molecular weight of 43 kDa, as expected. The enzyme was the most active toward L-aspartate as an amino donor, indicating that the purified enzyme is one of aspartate aminotrans-ferases exist in Xoo. Optimal activity of the enzyme was observed at around pH 7.5 and stability was much higher at alkaline pH rather than acidic pH values. The enzyme was considerably activated by the presence of manganese ion, showing about 157% of control activity at 1.0 mM.

Changes of the Textural Properties of the Sweet Potato Starch Gels using Maltogenic Amylase (Maltogenic amylase를 이용한 고구마 전분겔의 텍스쳐 특성 변화)

  • Kweon, Mee-Ra;Jung, Dong-Sun;Park, Kwan-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.649-654
    • /
    • 1993
  • We investigated the texture of the sweet potato starch gels treated with maltogenic amylase. Effects of branched gluco-oligosaccharides and acorn starch on the texture of the sweet potato starch gel were also investigated. Hardness and cohesiveness of gels were measured by using Instron and sensory evaluation on the gel properties was performed. From the results of the instrumental analysis, it was found that the overall textural properties as Mook could be improved by adding branched glucooligosaccharides, maltogenic amylase or acorn starch to the sweet potato starch gel. As a result, there was a decrease in the cohesiveness of gels while the hardness of gels increased. The sensory evaluation study indicated that the sweet potato starch gels treated with 0.02% maltogenic amylase, or added with 12.5% branched gluco-oligosaccharides, or mixed with 50% acorn starch had preferable quality as Mook.

  • PDF

Application Study and Pulp Separation Method by see weeds (해조류 Pulp 분리방법 및 응용연구)

  • Ryu, Soung-Ryual
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.685-693
    • /
    • 2015
  • In this study, we found that it is necessary to use the relatively new resource from seaweed extracts to extract and process pulp and create a local brand that can contribute to the local fishermen, development of new bio material, establishment of natural infrastructure, and acquisition of foreign investment. This study's seaweed pulp separation process is very overwhelming as seaweed is a compound of glycoside and polysaccharide. Nevertheless, we intend to develop a purification process and introduce applied technology to explore a new applied technology of pulp process. Once this technology is fully developed and mass produced, it would contribute to greater exports and increasing income level for the local fishermen. The ultimate goal of this study is to gather technical data from the first and second years of application, apply seaweed pulp to increase bio effect, and develop new functional bio-plastic packaging material, raw material, and samples with special characteristics of high molecules.

Enhancement of Antioxidant Activities and Whitening Effect of Acer mono Sap Through Nano Encapsulation Processes (고로쇠 수액 나노입자의 항산화 활성 및 미백 효과의 증진)

  • Kim, Ji-Seon;Seo, Yong-Chang;Choi, Woon-Yong;Kim, Hack-Soo;Kim, Bo-Hyeon;Shin, Dae-Hyeon;Yoon, Chang-Soon;Lim, Hye-Won;Ahn, Ju-Hee;Lee, Hyeon-Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.19 no.3
    • /
    • pp.191-197
    • /
    • 2011
  • In this study, we investigated antioxidant activities and whitening effects of Acer mono sap by encapsulation of nanoparticles. Acer mono sap was through ultra high pressure process and then encapsulated by lecithin. Nano-encapsulated The nanoparticles of Acer mono sap showed highest free radical scavengering effect as 89.7% in adding sample (1.0 mg/ml), compared to sap of non-encapsulation. It was showed strong inhibition effect on melanin production test by Clone M-3 cells as 47.8%. High inhibitory of tyrosinase was also measured as 85.8% by adding lecithin nano-particle of 1.0 mg/ml. The nano-particles also showed 14.8% of low cytotoxicity against human normal fibroblast cells in adding 1.0 mg/ml of the highest concentration. These results indicate that Acer mono sap may be a source of cosmetic agents capable of improving whitening effect and antioxidant activites.

Effects of Wearing Bio-active Material Coated Fabric against γ-irradiation-induced Cellular Damage in Sprague-Dawley Rats

  • Kang, Jung Ae;Kim, Hye Rim;Yoon, Sunhye;Nam, You Ree;Park, Sang Hyun;Go, Kyung-Chan;Yang, Gwang-Wung;Rho, Young-Hwan;Park, Hyo-Suk;Jang, Beom Su
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.3
    • /
    • pp.206-210
    • /
    • 2016
  • Background: Ionizing radiation causes cellular damage and death through the direct damage and/or indirectly the production of ROS, which induces oxidative stress. This study was designed to evaluate the in vivo radioprotective effects of a bio-active material coated fabric (BMCF) against ${\gamma}$-irradiation-induced cellular damage in Sprague-Dawley (SD) rats. Materials and Methods: Healthy male SD rats wore bio-active material coated (concentrations in 10% and 30%) fabric for 7 days after 3 Gy of ${\gamma}$-irradiation. Radioprotective effects were evaluated by performing various biochemical assays including spleen and thymus index, WBC count, hepatic damage marker enzymes [aspartate transaminase (AST) and alanine transaminase (ALT)] in plasma, liver antioxidant enzymes, and mitochondrial activity in muscle. Results and Discussions: Exposure to ${\gamma}$-irradiation resulted in hepatocellular and immune systemic damage. Gamma-irradiation induced decreases in antioxidant enzymes. However, wearing the BMCF-30% decreased significantly AST and ALT activities in plasma. Furthermore, wearing the BMCF-30% increased SOD (superoxide dismutase) and mitochondrial activity. Conclusion: These results suggest that wearing BMCF offers effective radioprotection against ${\gamma}$-irradiation-induced cellular damage in SD rats.