• Title/Summary/Keyword: Bio Diesel

Search Result 161, Processing Time 0.019 seconds

The effect of fat and oil soaking for low-strength mortar (저강도 모르타르에 있어 유지류 침지의 영향)

  • Baek, Cheol;Kim, Min-Sang;Moon, Byeong-Yong;Hwang, Chan-Woo;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.113-114
    • /
    • 2016
  • In this study, various fats and oils were soaked in low-strength mortar to experiment what kind of fats and oils had the worst effect on low-strength mortar; it went as follows. For rate of change in length of fat and oil soaking, there was an increase in the order of pig fat, bio-diesel, grape seed oil, and water; in the case of olive oil it was destroyed within 56 days. For rate of change in mass, there was an increase in the order of bio-diesel, water, pig fat, grape seed oil, and olive oil. For relative motion elastic coefficient, there was a decrease in the order of olive oil, grape seed oil, and water. On the whole, pig fat, bio-diesel, and olive oil were shown to have the worst effect on low-strength mortar.

  • PDF

Evaluation of Penetration Depth of Emulsified Refined Bio Diesel Applied to the Concrete (유화처리 바이오디젤이 도포된 콘크리트의 침투깊이 판정)

  • Baek, Cheol;Kim, Tae-Woo;Lee, Jae-Jin;Lee, Dong-Yun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.17-18
    • /
    • 2017
  • This study is to provide a evaluation method for the penetration depth of emulsified refined bio diesel(ERBD)applied to a surface of the concrete by using water absorption capability of the concrete. The concrete applied with ERBD was immersed at water for 1 min., 5min., and 10 min. and then was checked the brightness with elapse of time. Test results indicated that there was clear difference between ERBD part and non ERBD part in concrete specimen after measuring the brightness until 120min.

  • PDF

Emulsification of the Mixture of Catalytic Pyrolysis Oil Obtained under Methane and Nitrogen Environment in Diesel Using Span 80 and Atlox 4916 as Surfactants

  • Farooq, Abid;Park, Young-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.32 no.3
    • /
    • pp.357-360
    • /
    • 2021
  • Emulsions were prepared using a mixture of bio-oil obtained from the pyrolysis of sawdust in an N2 environment and Quercus mongolica in a CH4 environment for both non-catalytic and catalytic cases. Both prepared emulsions were examined by measuring the physical stability and Fourier transform infrared spectroscopy. The emulsion with HLB 5.8 (Span 80 and Atlox 4916) for the ratio of bio-oil (B-oil and C-oil): surfactant: diesel = 10% : 3% : 87% showed stability for 15 days. Combining oils produced in N2 and CH4 environments could be a potential solution for generating high-quality emulsions with a high heating value.

Synthesis of Vegetable-based Alkanol Amides for Improving Lubricating Properties of Diesel Fuel (경유의 윤활 성능 향상을 위한 식물유 기반 알칸올 아마이드의 합성)

  • Yuk, Jung-Suk;Kim, Young-Wun;Yoo, Seung-Hyun;Chung, Keun-Wo;Kim, Nam-Kyun;Lim, Dae-Jae
    • Applied Chemistry for Engineering
    • /
    • v.23 no.4
    • /
    • pp.421-427
    • /
    • 2012
  • To improve the lubricity of ultra low sulfur diesel, vegetable oil-based alkanol amide derivatives were prepared and their lubricity properties were studied. To synthesize the alkanol amides, we conducted the amidation reaction of diethaolamine High Frequency Reciprocating Rig (HFRR) and the fatty acid methyl esters, obtained by the continuous transesterification of methanol and several vegetable oil, such as soybean oil, palm oil and coconut oil. The synthesized amides were soluble in ultra low sulfur diesel in the concentration range of ca. 1 wt%; the lubricating properties of ultra low sulfur diesel containing 120 ppm of amides were measured using an HFRR method. It was found that the wear scar diameter in the pure ultra low sulfur diesel decreased significantly from 581 ${\mu}m$ to 305~323 ${\mu}m$ upon the addition of the amides, indicating that lubricating properties of the diesel were improved. On the other hand, the types of vegetable oils did not affect the wear scar diameters, implying that lubricating properties of the diesel did not depend strongly on the structures of alkyl groups of alkanol amide derivatives. When we measured the lubricating properties of the one type of diesels containing various amounts of alkanol amide, we observed that the wear scar diameter decreased drastically with increasing the amide concentration, meaning that the lubricity improved with the amide concentration.

Study on Fuel Characteristics Depending on Mixing Ratio of Bio-Butanol and Bio-Ethanol (바이오부탄올, 바이오에탄올 혼합비율에 따른 연료적 특성 연구)

  • KIM, SHIN;KIM, JAE-KON;PARK, CHEON-KYU;HA, JONG-HAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.6
    • /
    • pp.704-711
    • /
    • 2017
  • Korea, which has a high dependency on energy imports, is greatly affected by fluctuations in international oil prices. In order to offset these effects, various policies such as 'diversification of energy sources' and 'energy mix' are being pursued. Renewable Fuel Standard (RFS) is a policy promoted for this purpose, and a compulsory mixing system is applied only to the diesel. In order to reduce dependence on fossil fuels in various countries, they are concentrating on the dissemination of bio-alcohol as well as bio-diesel, and commercialization through various verification. In this study, evaluation of domestic materials and vehicles was carried out to promote domestic bio alcohol fuel. We analyzed the fuel characteristics of domestic quality standard items by mixing them with gasoline of automobile at a certain mixing ratio (0%, 3%, 6%, and 10%).

Performance characteristics of a single-cylinder power tiller engine with biodiesel produced from mixed waste cooking oil

  • Choi, Hwon;Woo, Duk Gam;Kim, Tae Han
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.1
    • /
    • pp.29-41
    • /
    • 2020
  • Biodiesel is a clean energy resource that can replace diesel as fuel, which can be used without any structural changes to the engine. Vegetable oil accounts for 95 percent of the raw materials used to produce biodiesel. Thus, many problems can arise, such as rising prices of food resources and an imbalance between supply and demand. Most of the previous studies using waste cooking oil used waste cooking oil from a single material. However, the waste cooking oil that is actually collected is a mixture of various types of waste cooking oil. Therefore, in this study, biodiesel produced with mixed waste cooking oil was supplied to an agricultural single-cylinder diesel engine to assess its potential as an alternative fuel. Based on the results, the brake specific fuel consumption (BSFC) increased compared to diesel, and the axis power decreased to between 70 and 99% compared to the diesel. For emissions, NOx and CO2 were increased, but CO and HC were decreased by up to 1 to 7% and 16 to 48%, respectively, compared to diesel. The emission characteristics of the mixed waste cooking oil biodiesel used in this study were shown to be similar to those of conventional vegetable biodiesel, confirming its potential as a fuel for mixed waste cooking oil biodiesel.

Development of Transportation Bio-energy and Its Future (수송용 바이오에너지 개발과 미래)

  • Chung, Jay-H.;Kwon, Gi-Seok;Jang, Han-Su
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.1
    • /
    • pp.1-5
    • /
    • 2008
  • Negative environmental consequences of fossil fuels and the concerns about their soaring prices have spurred the search for alternative energy sources. While other alternative energies-like solar, wind, geothermal, hydroelectric, and tidal-offer viable options for electricity generation, around 40% of total energy consumption requires liquid fuels like gasoline or diesel fuel. This is where bio-energy/biofuels is especially attractive, where they can serve as a practical alternative to oil. The production of liquid biofuels for transportation will depend upon a stable supply of large amount of inexpensive cellulosic biomass obtained on a sustainable basis. This paper reviewed development status of transportation bio-energy for vehicles, technical barriers to the production of cellulosic ethanol, and the global future of bio-diesel and ethanol production.

Development of a Rapeseed Reaping Equipment Attachable to a Conventional Combine (I) - Design and Construction of a Prototype - (보통형 콤바인 부착용 유채 예취장치 개발(I) - 시작기 설계 및 제작 -)

  • Lee, Choung-Keun;Choi, Yong;Jun, Hyun-Jong;Lee, Seung-Kyu;Ryu, Chan-Seok;Kim, Dong-Min
    • Journal of Biosystems Engineering
    • /
    • v.33 no.6
    • /
    • pp.371-378
    • /
    • 2008
  • Bio-diesel applications seem to be extended due to bio-diesel policies and changes of agricultural environment. This study was conducted to develop a rapeseed reaping equipment attachable to the conventional combine. This paper was intended to report concept design, process and manufacturing of the prototype rapeseed reaping equipment. For concept design, physical properties of "SUNMANG", which is a typical rapeseed as bio-diesel materials, were considered. The designed prototype rapeseed reaping equipment consisted of wide-width plates, finger type knifes, side cutter knifes and drive equipments. The wide-width plate is 2.1 m wide, 0.7 m long, and 0.002 m thick. The finger type cutter knifes have 14.5 fingers, 30 knifes, and the specification was 7.6 cm of pitch, 8.3 cm of length and $21^{\circ}$ of cutting angle. The side cutter knifes consisted of a hydraulic pump, a hydraulic motor, a flow control and a relief valve, a hydraulic hose, a driving equipment and a reciprocating cutter knife. The 18 reciprocating cutter knifes were 137 cm long and knife pitch, knife length and cutting angle were 7.7 cm, 10.5 cm, and $18^{\circ}$. Prototype weight of the rapeseed reaping equipment was heavier by 272 kg when compared with the manual reaping equipments. Load distributions of left and right side showed 50% and 49%, and those of front and rear side showed 64% and 36%. Static turn-over angles in left and right of the prototype were $38.1^{\circ}$ and $38.7^{\circ}$, respectively. The designed prototype rapeseed reaping equipment was properly mounted at the front of a conventional combine.

Bio-diesel of Vegetable Oils by Lipase Catalyzed Trans-esterification into Continuous Process (연속공정에서 리파제 촉매 전이에스테르화에 의한 식물유의 바이오디젤화)

  • Hyun, Young-Jin;Kim, Hae-Sung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.106-115
    • /
    • 2005
  • Bio-diesel as fatty acid methyl ester was derived from such oils as soybean, peanut and canola oil by lipase catalyzed continuous trans-esterification. So the activation of lipase(Novozym - 435) was kept to be up to 4:1, the limiting molar ratio of methanol to oil under one-step addition of methanol due to the miscibility of oil and methanol through the static mixer for 4hrs and the elimination of glycerol on the surface of lipase by 7wt% silica gel. Therefore the overall yield of fatty acid methyl ester from soybean oil appeared to be 98% at 50$^{\cdot}C$ of reaction temperature under two-steps addition of methanol with 2${\times}$2:1 of methanol to oil molar ratio at an interval of 5.5hrs, 7wt% of lipase, 24 number of mixer elements, 0.2ml/min of flow rate and 7wt% of silica gel.

A Study on the Fuel Characteristics of Hydrotreated Biodiesel(HBD) for Alternative Diesel Fuel (경유 대체연료로서 수첨 바이오디젤의 연료적 특성 연구)

  • Kim, Jae-Kon;Jeon, Cheol-Hwan;Yim, Eui-Soon;Jung, Choong-Sub
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.508-516
    • /
    • 2011
  • Hydrotreated biodiesel(HBD) is paraffinic bio-based liquid, with the chemical structure $C_nH_{2n+2}$, originating from vegetable oil(the process can also be applied to animal fat). The oil or fat is treated in a number of process, the most important being hydrogenation, in order to create a bio-based liquid diesel fuel. During the hydrogenation, oxygen is removed from the triglyceride and converted into water. Propane is formed as a by product and can be combusted and used for energy production. HBD can be used in conventional diesel engines, pure or blended with conventional diesel, due to its similar physical properties to diesel. This study reports the quality characteristics with chemical and physical properties as an alternative diesel fuel. Especially, HBD showed higher cetane value and number than FAME, and it is consisted of $C_{15}$ - $C_{18}$ n-paraffinic compounds. We also describes quality characteristics of HBD blends(2, 5, 10, 20, 30, 40, 50 vol%) in automotive diesel. HBD blends(max. 20 vol%) were the limit by the Korean specification due to poor low temperature characteristics.