Synthesis of Vegetable-based Alkanol Amides for Improving Lubricating Properties of Diesel Fuel

경유의 윤활 성능 향상을 위한 식물유 기반 알칸올 아마이드의 합성

  • Yuk, Jung-Suk (Integrated Chemistry Research Division, Industrial Bio-based Materials Research Group, KRICT) ;
  • Kim, Young-Wun (Integrated Chemistry Research Division, Industrial Bio-based Materials Research Group, KRICT) ;
  • Yoo, Seung-Hyun (Integrated Chemistry Research Division, Industrial Bio-based Materials Research Group, KRICT) ;
  • Chung, Keun-Wo (Integrated Chemistry Research Division, Industrial Bio-based Materials Research Group, KRICT) ;
  • Kim, Nam-Kyun (Integrated Chemistry Research Division, Industrial Bio-based Materials Research Group, KRICT) ;
  • Lim, Dae-Jae (EMAX Solutions CO., LTD.)
  • 육정숙 (한국화학연구원 융합화학연구본부 산업바이오화학연구센터) ;
  • 김영운 (한국화학연구원 융합화학연구본부 산업바이오화학연구센터) ;
  • 유승현 (한국화학연구원 융합화학연구본부 산업바이오화학연구센터) ;
  • 정근우 (한국화학연구원 융합화학연구본부 산업바이오화학연구센터) ;
  • 김남균 (한국화학연구원 융합화학연구본부 산업바이오화학연구센터) ;
  • 임대재 ((주)이맥솔루션)
  • Published : 2012.08.10

Abstract

To improve the lubricity of ultra low sulfur diesel, vegetable oil-based alkanol amide derivatives were prepared and their lubricity properties were studied. To synthesize the alkanol amides, we conducted the amidation reaction of diethaolamine High Frequency Reciprocating Rig (HFRR) and the fatty acid methyl esters, obtained by the continuous transesterification of methanol and several vegetable oil, such as soybean oil, palm oil and coconut oil. The synthesized amides were soluble in ultra low sulfur diesel in the concentration range of ca. 1 wt%; the lubricating properties of ultra low sulfur diesel containing 120 ppm of amides were measured using an HFRR method. It was found that the wear scar diameter in the pure ultra low sulfur diesel decreased significantly from 581 ${\mu}m$ to 305~323 ${\mu}m$ upon the addition of the amides, indicating that lubricating properties of the diesel were improved. On the other hand, the types of vegetable oils did not affect the wear scar diameters, implying that lubricating properties of the diesel did not depend strongly on the structures of alkyl groups of alkanol amide derivatives. When we measured the lubricating properties of the one type of diesels containing various amounts of alkanol amide, we observed that the wear scar diameter decreased drastically with increasing the amide concentration, meaning that the lubricity improved with the amide concentration.

초저유황 경유의 윤활성능을 향상시킬 목적으로 식물유 기반 알칸올 아마이드 유도체를 합성하여 윤활성능을 평가하였다. 알칸올 아마이드 유도체는 폐식물유(다크오일), 팜유, 코코넛유를 메탄올과의 연속 전이에스테르화 반응을 통하여 합성한 지방산 메틸에스테르와 디에탄올아민(DEA)의 아마이드화 반응을 행하여 합성하였다. 합성한 알칸올 아마이드 유도체는 1 wt% 범위 내에서 초저유황 경유에 잘 용해되었으며, 이 유도체를 120 ppm 포함한 초저유황 경유의 윤활성능을 HFRR법으로 측정하였다. 그 결과, 초저유황 경유의 마모흔의 직경이 581 ${\mu}m$에서 아마이드 첨가 후 305~323 ${\mu}m$으로 현저히 작아져 초저유황 경유의 윤활성능을 향상하는 것으로 확인되었다. 한편, 식물유의 종류에 따른 마모흔의 차이는 크지 않아 알칸올 아마이드 유도체의 알킬기의 구조에 따른 윤활성능의 차이는 크게 나타나지 않았다. 알칸올 아마이드 한 종류를 선정하여 첨가 농도에 따른 윤활성능을 평가한 결과, 농도에 따라 마모흔의 직경이 현저히 작아지는 결과를 얻었는데 이는 윤활성능이 첨가 농도에 따라 향상되는 것을 의미한다.

Keywords

References

  1. C. E. Kolb, S. C. Herndon, J. B. Mcmanus, J. H. Shorter, M. S. Zahniser, D. D. Nelson, J. T. Jayne, M. R. Canagaratna, and D. R. Worsnop, Environ. Sci. Technol., 38, 5694 (2004). https://doi.org/10.1021/es030718p
  2. S. Solomon, Rev. Geophy., 37, 275 (1999). https://doi.org/10.1029/1999RG900008
  3. Y. K. Hong and W. H. Hong, Kor. Chem. Eng. Res., 45, 424 (2007).
  4. C. Song. Fuel Chemistry Division Preprints, 47, 438 (2002).
  5. Y.-C. Yao, J.-H. Tsai, A.-L. Chang, and F.-T. Jeng, Atmos. Environ., 42, 6560 (2008). https://doi.org/10.1016/j.atmosenv.2008.04.031
  6. A. A. Lappas, R. Budisteanu, K. Drakaki, and I. A. Vasalos, Global Nest: the Int. J., 1, 15 (1999).
  7. C. Song, Catal. Today, 86, 211 (2003). https://doi.org/10.1016/S0920-5861(03)00412-7
  8. D. P. Wei, Final Report TS010/85, Tribology Section, Imperial College (1985).
  9. D. Wei and H. Spikes, Wear, 1, 17 (1986).
  10. G. Anastopoulos, E. Lois, D. Karonis, F. Zanikos, and S. Kalligeros, Ind. Eng. Chem. Res., 40, 452 (2001). https://doi.org/10.1021/ie000488c
  11. R. Caprotti, C. Bovington, W. Fowler, and M. G. Taylor, SAE Paper 922183; Society of Automotive Engineers: Warrendale, PA (1992).
  12. R. J. Batt, J. A. McMillan, and I. P. Bradbury, SAE Paper 961943; Society of Automotive Engineers : Warrendale, PA (1996).
  13. M. Nikanjam and E. Burk, SAE Paper 940248; Society of Automotive Engineers: Warrendale, PA (1994).
  14. M. Nikanjam, SAE Paper 942014; Society of Automotive Engineers: Warrendale, PA (1994).
  15. R. M. Galbraith and P. B. Hertz, SAE Paper 972862; Society of Automotive Engineers : Warrendale, PA (1997).
  16. W. M. Kays and M. E. Crawford, Convective Heat and Mass Transfer, 2nd ed, 1, 87, Ma Graw-Hill, New York (1980).
  17. D. Karonis, G. Anastopoulos, E. Lois, S. Stournas, F. Zannikos, and A. Serdari, SAE Paper 1999-01-1471; Society of Automotive Engineers : Warrendale, PA (1999).
  18. K. Bhatnagar, S. Kaul, V. K. Chhibber, and A. K. Gupta, Energy Fuels, 20, 1341 (2006). https://doi.org/10.1021/ef0503818
  19. B. R. Moser, Energy Fuels, 22, 4301 (2008). https://doi.org/10.1021/ef800588x
  20. M. T. Siniawski, N. Saniei, B. Adhikari, and L. A. Doezema, J. Synth. Lubr., 24, 101 (2007). https://doi.org/10.1002/jsl.32
  21. G. Knothe and K. R. Steidley, Energy & Fuels, 19, 1192 (2005). https://doi.org/10.1021/ef049684c
  22. G. Anastopoulos, E. Lois, F. Zannikos, S. Kalligeros, and C. Teas, Tribol. Int., 34, 749 (2001). https://doi.org/10.1016/S0301-679X(01)00067-6
  23. G. Anastopoulos, E. Lois, A. Serdari, F. Zanikos, S. Stournas, and S. Kalligeros, Energy Fuel, 15, 106 (2001). https://doi.org/10.1021/ef990232n
  24. S.-Y. Baek, Y.-W. Kim, K. Chung, and S.-H. Yoo, Appl. Chem. Eng., 22, 367 (2011).
  25. S.-Y. Baek, Y.-W. Kim, K. Chung, S.-H. Yoo, N. K. Kim, and Y.-J. Kim, I&EC research, 51, 3564 (2012).
  26. A. K. Singh and R. K. Singh, J. Surfact Deterg, 15, 399 (2012). https://doi.org/10.1007/s11743-011-1321-0
  27. C.-I. Chen and S. M. Hsu, Tribology Lett., 14, 83 (2003). https://doi.org/10.1023/A:1021748002697
  28. American Society for testing and Materials, ASTM designation, ASTM D664 Philadelphia.
  29. American Society for testing and Materials, ASTM designation, D5558 Philadelphia.
  30. BY G. F. D'Alelio and E. E. Reid, J. Am. Chem. Soc., 59, 111 (1937). https://doi.org/10.1021/ja01280a026
  31. K. J. Liu, A. Nag, and J.-F. Shaw, J. Agric. Food Chem., 49, 5761 (2001). https://doi.org/10.1021/jf0107858
  32. American Society for testing and Materials, ASTM designation, D6079 Philadelphia.