• Title/Summary/Keyword: Binary Tree algorithm

Search Result 128, Processing Time 0.028 seconds

Design of Tree Architecture of Fuzzy Controller based on Genetic Optimization

  • Han, Chang-Wook;Oh, Se-Jin
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.3
    • /
    • pp.250-254
    • /
    • 2010
  • As the number of input and fuzzy set of a fuzzy system increase, the size of the rule base increases exponentially and becomes unmanageable (curse of dimensionality). In this paper, tree architectures of fuzzy controller (TAFC) is proposed to overcome the curse of dimensionality problem occurring in the design of fuzzy controller. TAFC is constructed with the aid of AND and OR fuzzy neurons. TAFC can guarantee reduced size of rule base with reasonable performance. For the development of TAFC, genetic algorithm constructs the binary tree structure by optimally selecting the nodes and leaves, and then random signal-based learning further refines the binary connections (two-step optimization). An inverted pendulum system is considered to verify the effectiveness of the proposed method by simulation.

A Study on the Mininum Cost by Clock Routing Algorithm (클럭 라우팅 알고리즘을 이용한 최소비용에 관한 연구)

  • 우경환;이용희;이천희
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.943-946
    • /
    • 1999
  • In this paper, we present a new clock routing algorithm which minimizes total wirelength under any given path-length skew bound. The algorithm onstructs a bounded-skew tree(BST) in two steps:(ⅰ) a bottom-up phase to construct a binary tree of shortest-distance feasible regions which represent the loci of possible placements of clock entry points, and (ⅱ) a top-down phase to determine the exact locations of clock entry points. Experimental results show that our clock routing algorithm, named BST/DME, can produce a set of solutions with skew and wirelength trade-off.

  • PDF

Embedding Complete Binary Trees into Crossed Cubes (완전이진트리의 교차큐브에 대한 임베딩)

  • Kim, Sook-Yeon
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.36 no.3
    • /
    • pp.149-157
    • /
    • 2009
  • The crossed cube, a variation of the hypercube, possesses a better topological property than the hypercube in its diameter that is about half of that of the hypercube. It has been known that an N-node complete binary tree is a subgraph of an (N+1)-node crossed cube [P. Kulasinghe and S. Bettayeb, 1995]. However, efficient embedding methods have not been known for the case that the number of nodes of the complete binary tree is greater than that of the crossed cube. In this paper, we show that an N-node complete binary tree can be embedded into an M-node crossed cube with dilation 1 and load factor [N/M], N>M$\geq$2. The dilation and load factor is optimal. Our embedding has a property that the tree nodes on the same level are evenly distributed over the crossed cube nodes. The property is especially useful when tree-structured algorithms are processed on a crossed cube in a level-by-level way.

Balanced Binary Search Using Prefix Vector for IP Address Lookup (프리픽스 벡터를 사용한 균형 이진 IP 주소 검색 구조)

  • Kim, Hyeong-Gee;Lim, Hye-Sook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.5B
    • /
    • pp.285-295
    • /
    • 2008
  • Internet routers perform packet forwarding which determines a next hop for each incoming packet using the packet's destination IP address. IP address lookup becomes one of the major challenges because it should be performed in wire-speed for every incoming packet under the circumstance of the advancement in link technologies and the growth of the number of the Internet users. Many binary search algorithms have been proposed for fast IP address lookup. However, tree-based binary search algorithms are usually unbalanced, and they do not provide very good search performance. Even for binary search algorithms providing balanced search, they have drawbacks requiring prefix duplication. In this paper, a new binary search algorithm which provides the balanced binary search and the number of its entries is much less than the number of original prefixes. This is possible because of composing the binary search tree only with disjoint prefixes of the prefix set. Each node has a prefix vector that has the prefix nesting information. The number of memory accesses of the proposed algorithm becomes much less than that of prior binary search algorithms, and hence its performance for IP address lookup is considerably improved.

Algorithm for Minimum Linear Arrangement(MinLA) of Binary Tree (이진트리의 최소선형배열 알고리즘)

  • Sang-Un Lee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.2
    • /
    • pp.99-104
    • /
    • 2024
  • In the deficiency of an exact solution yielding algorithm, approximate algorithms remain as a solely viable option to the Minimum Linear Arrangement(MinLA) problem of Binary tree. Despite repeated attempts by a number of algorithm on k = 10, only two of them have been successful in yielding the optimal solution of 3,696. This paper therefore proposes an algorithm of O(n) complexity that delivers the exact solution to the binary tree. The proposed algorithm firstly employs an In-order search method by which n = 2k - 1 number of nodes are assigned with a distinct number. Then it reassigns the number of all nodes that occur on level 2 ≤ 𝑙 ≤ k-2, (k = 5) and 2 ≤ 𝑙 ≤ k-3, (k = 6), including that of child of leaf node. When applied to k=5,6,7, the proposed algorithm has proven Chung[14]'s S(k)min=2k-1+4+S(k-1)min+2S(k-2)min conjecture and obtained a superior result. Moreover, on the contrary to existing algorithms, the proposed algorithm illustrates a detailed assignment method. Capable of expeditiously obtaining the optimal solution for the binary tree of k > 10, the proposed algorithm could replace the existing approximate algorithms.

A GA-based Binary Classification Method for Bankruptcy Prediction (도산예측을 위한 유전 알고리듬 기반 이진분류기법의 개발)

  • Min, Jae-H.;Jeong, Chul-Woo
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.33 no.2
    • /
    • pp.1-16
    • /
    • 2008
  • The purpose of this paper is to propose a new binary classification method for predicting corporate failure based on genetic algorithm, and to validate its prediction power through empirical analysis. Establishing virtual companies representing bankrupt companies and non-bankrupt ones respectively, the proposed method measures the similarity between the virtual companies and the subject for prediction, and classifies the subject into either bankrupt or non-bankrupt one. The values of the classification variables of the virtual companies and the weights of the variables are determined by the proper model to maximize the hit ratio of training data set using genetic algorithm. In order to test the validity of the proposed method, we compare its prediction accuracy with ones of other existing methods such as multi-discriminant analysis, logistic regression, decision tree, and artificial neural network, and it is shown that the binary classification method we propose in this paper can serve as a premising alternative to the existing methods for bankruptcy prediction.

Two Attribute-based Broadcast Encryption Algorithms based on the Binary Tree (이진트리 기반의 속성기반 암호전송 알고리즘)

  • Lee, Moon Sik;Kim, HongTae;Hong, Jeoung Dae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.358-363
    • /
    • 2014
  • In this paper, we present two constructions of the attribute-based broadcast encryption(ABBE) algorithm. Attribute-based encryption(ABE) algorithm enables an access control mechanism over encrypted data by specifying access policies among private keys and ciphertexts. ABBE algorithm can be used to construct ABE algorithm with revocation mechanism. Revocation has a useful property that revocation can be done without affecting any non-revoked uers. The main difference between our algorithm and the classical ones derived from the complete subtree paradigm which is apt for military hierarchy. Our algorithm improve the efficiency from the previously best ABBE algorithm, in particular, our algorithm allows one to select or revoke users by sending ciphertext of constant size with respect to the number of attributes and by storing logarithm secret key size of the number of users. Therefore, our algorithm can be an option to applications where computation cost is a top priority and can be applied to military technologies in the near future.

Implementation of Anti-Collision Algorithm based on RFID System using FPGA (FPGA를 이용한 RFID 시스템 기반 충돌 방지 알고리즘 구현)

  • Lee, Woo-Gyeong;Kim, Sun-Hyung;Lim, Hae-Jin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.3
    • /
    • pp.413-420
    • /
    • 2006
  • In this thesis, a RFID baseband system is implemented based on the international standard ISO/IEC 18000-6 Type-B using FPCA, and also anti-collision algorithm is implemented to improve the system performance. We compares the performance of the proposed anti-collision algorithm with that binary tree algorithm and bit-by-bit algorithm, and also validated analytic results using OPNET simulation. The proposed algorithm for Type-B transmission protocol and collision prohibition was designed using ISE7.1i which is a FPGA design-tool of Xilinx and implemented with Spartan2 chip which is a FPGA device.

A Study on the Improvement of Multitree Pattern Recognition Algorithm (Multitree 형상 인식 기법의 성능 개선에 관한 연구)

  • 김태성;이정희;김성대
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.14 no.4
    • /
    • pp.348-359
    • /
    • 1989
  • The multitree pattern recognition algorithm proposed by [1] and [2] is modified in order to improve its performance. The basic idea of the multitree pattern classification algorithm is that the binary dceision tree used to classify an unknow pattern is constructed for each feature and that at each stage, classification rule decides whether to classify the unknown pattern or to extract the feature value according to the feature ordet. So the feature ordering needed in the calssification procedure is simple and the number of features used in the classification procedure is small compared with other classification algorithms. Thus the algorithm can be easily applied to real pattern recognition problems even when the number of features and that of the classes are very large. In this paper, the wighting factor assignment scheme in the decision procedure is modified and various classification rules are proposed by means of the weighting factor. And the branch and bound method is applied to feature subset selection and feature ordering. Several experimental results show that the performance of the multitree pattern classification algorithm is improved by the proposed scheme.

  • PDF

Fast Inter CU Partitioning Algorithm using MAE-based Prediction Accuracy Functions for VVC (MAE 기반 예측 정확도 함수를 이용한 VVC의 고속 화면간 CU 분할 알고리즘)

  • Won, Dong-Jae;Moon, Joo-Hee
    • Journal of Broadcast Engineering
    • /
    • v.27 no.3
    • /
    • pp.361-368
    • /
    • 2022
  • Quaternary tree plus multi-type tree (QT+MTT) structure was adopted in the Versatile Video Coding (VVC) standard as a block partitioning tool. QT+MTT provides excellent coding gain; however, it has huge encoding complexity due to the flexibility of the binary tree (BT) and ternary tree (TT) splits. This paper proposes a fast inter coding unit (CU) partitioning algorithm for BT and TT split types based on prediction accuracy functions using the mean of the absolute error (MAE). The MAE-based decision model was established to achieve a consistent time-saving encoding with stable coding loss for a practical low complexity VVC encoder. Experimental results under random access test configuration showed that the proposed algorithm achieved the encoding time saving from 24.0% to 31.7% with increasing luminance Bjontegaard delta (BD) rate from 1.0% to 2.1%.