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Design of Tree Architecture of Fuzzy Controller

based on Genetic Optimization

Abstract
As the number of input and fuzzy set of a fuzzy system increase, the size of the rule base increases
exponentially and becomes unmanageable (curse of dimensionality). In this paper, tree architectures of fuzzy
controller (TAFC) is proposed to overcome the curse of dimensionality problem occurring in the design of
fuzzy controller. TAFC is constructed with the aid of AND and OR fuzzy neurons. TAFC can guarantee
reduced size of rule base with reasonable performance. For the development of TAFC, genetic algorithm

constructs the binary tree structure by optimally selecting the nodes and leaves,

and then random

signal-based learning further refines the binary connections (two-step optimization). An inverted pendulum

systern is considered to verify the effectiveness of the proposed method by simulation.

Keywords . fuzzy controller, fuzzy neurons, genetic algorithm

I. Introduction

logic controller has been attracted great
industrial

Fuzzy
attention from both the
communities. Fuzzy
simpler, more human approach to control design and
do not demand the mathematical modeling knowledge
design  methods. As

academic and
logic controller allows for a

of more conventional control
systems become more complex, the ability to describe
them mathematically becomes more difficult. For this
provides
classical or

fuzzy logic controller reasonable,
effective  alternatives  to
controllers [1]-[5].

Rule number reduction is important for fuzzy control

reason,
state-space

of complex processes with high dimensionality. As the
number of input and fuzzy set of a fuzzy system
increase, the size of the rule base increases
exponentially and becomes unmanageable (curse of
problem, tree
architectures of (TAFC), which
consists of AND and OR fuzzy neurons, are proposed

in this paper. The structure of proposed TAFC is

dimensionality) [6]. To solve this

fuzzy controller

different from that of conventional logic-based fuzzy
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neural networks to reduce the number of fuzzy rules
effectively. TAFC has flexible tree
optimally placing fuzzy neurons as a function and

structure by

selecting relevant input sub-spaces as leaves. The
fuzzy neurons exhibit learning abilities as they come
with a collection of adjustable connection weights [6].
In this setting of fuzzy neurons, the synergy of
learning and transparency is well articulated. In the
development stage of TAFC, we use two-step
optimization where genetic algorithm (GA) develops the
binary tree structure by optimally selecting the nodes
and leaves, and then random signal-based learning
(RSL) [7] further refines the binary connections. An
inverted pendulum system is considered to show the
validity of the proposed TAFC.

II. Structure of TAFC

Before proceeding with the detailed architecture of
TAFC and learning realized for the over all network,
we will  briefly types of
logic-hased neurons as being introduced in [6]. AND

remind the two basic
neuron aggregates input signals (membership values)
X = [, @y ...w,] by first combining them individually

e

with the adjustable connections (weights)
W= lw, wy ... w,] €0, 1]" and afterwards globally
ANDing these results,

y = AND(X ’ W) = T,‘7;]</wi S 5(51) (l)

where t- and s—norms, ie. T and s, are used (o
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- represent the AND and OR operation, respectively. The
structure of OR neuron is dual to that reported for
AND neuron, namely,

y= OR(x;w) = 8/ (w, t z;) 2

The AND and OR neurons realize pure logic
operations on the membership values. Some obvious
ohservations hold. (i) For Dbinary inputs and
connections, the neurons transform to standard AND
and OR gates. (i) The connections close to zero (one)
identify the relevant inputs in the AND (OR) neuron.
(iii) The parametric flexibility is an important feature
to be exploited in the design of the networks. In all
experiments, we consider these triangular norms and
co-norms to be a product operation (a t b=ab)} and

probabilistic sum (a s b=atb-ab), respectively.
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Fig.164. Structure of TAFC.
Fig. 1 shows the structure of TAFC using

logic~based fuzzy neurons being viewed here as a
generic means of forming the skeleton of the logic
model. In this structure, each node (AND/OR neuron)
and leaf (L) can select
(AND/OR) and input

Obviously, TAFC has flexible structure by allowing

one of fuzzy neurons

sub-spaces,  respectively.
{0,1} in every leaf to enhance the performance, i.e.
eliminate useless connections from TAFC, and can
express any logic by selecting proper “Level”.

ITI. Optimization of TAFC

A. Genetic Algorithm
(GA) [8][91 is a
algorithm based on an analogy with the process of

A genetic algorithm search
natural selection and evolutionary genetics. It starts
from a set of random strings, called individuals of

population, and proceeds repeatedly from generation to

generation through genetic operators. The structure of
the chromosome (individual) to construct a Boolean
structure of TAFC is shown in Fig. 1.

A conventional simple GA has three basic operators:
reproduction, and mutation. Reproduction
probability is proportional to the fitness value of a
string. In the process, the fitness is calculated for each

individual by using the fitness function as follows:

Crossover,

1

=170

3
where @ is the performance index. Crossover implies
the mating of two individuals. The information of two
randomly selected individuals is partly interchanged at
the crossover site. is applied to elicit
valuable information from the parents, and is applied
with a crossover probability. The mutation operator
insures against bit loss and can be a source of new
bits, or diversity. Since mutation is random through

Crossover

the search space, it must be used sparingly.

B. Random Signal-based Learning
Random signal-based learning (RSL) [7] is a kind of
learning that is

reinforcement expressed in  the

following form:
weight (t+1) = weight (t) +nr(t) fF(n(t)) (4)

where 7 is the learning rate, f() is the activation
function as shown in (6), n{t) is the discrete random
process with the values in [-1,1], and r{(t) is the
reinforcement signal which is defined as follows:

r(t)‘-':{é if A@<o0

fAQ=0 )

where AQ is the change of the performance index
which will be defined later. In this learning law,
only when the performance index
learning  (r(t)=1). Otherwise, the
learning 1s rejected (r{t)=0). The activation function f()

synapses learn

decreases  after

is a hipolar sigmoid function:

2

f(:b):‘m—-I

6)

The main idea of RSL is that the random process

n(t) randomly agitates the state in the range of
learning rate in order to find the optimal state. RSL is
very effective to find the local optimum because the
candidate solution moves in a downhill direction very

quickly.

C. Two-step Optimization of TAFC

To battle the problem of exponential increase of the
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rule, GA attempts to construct a Boolean structure of
TAFC by selecting inputs, including {0, 1}, as leaves
and fuzzy neurons as nodes that shape up the tree
architecture, and then concentrate on the detailed
optimization of the connections (weights) connected to
each nodes by RSL., RSL is a kind of reinforcement
leaming algorithm that is very effective to find the
local optimum because the candidate solution moves in
a downhill very quickly. During GA
optimization, the connections to AND and OR neuron
set as zero and one, respectively, because of the
characteristic of the fuzzy neurons as mentioned
before. RSL refinement involves transforming binary
connections into the weights in the unit interval. RSL

direction

refinement considers only the tree connections, but the
eliminated connections, which occur by the leaves with
the value zero or one, are not considered as shown in
Fig. 2. This enhancement aims at further reduction in
the value of the performance index.

IV. Experimental Results

To show the performance of the proposed method,
TAFC is applied to balancing an inverted pendulum on
a cart. Let 2, =6 (angle of the pole with respect to

the vertical axis) and x2=é (angular velocity of the

pole), then the state equation can be expressed as
follows [71:

2 ™
(M+m)gsinz, —(F+mlzisinz,)cosz,
(4/3(M+m) —m(cosz, )*)l

To™

where M (mass of cart) is 1.0Kg, m (mass of pole) is
01Kg, [ (half length of pole) is 05m, g (gravity
acceleration) is 9.8m/s2, and F is the applied force in
Newton. In this simulation, the following conditions are
considered: initial states (0lradl, 8lrad/s]) are (0.3, 0)
and (-0.3, 0); boundary conditions for 8, g, and F are
[-0505], [-1,11, and [~2525], population size=50;
generation number=100; crossover rate=(0.9; mutation
rate=0.03; learning rate in RSL=0.01; iteration number
in RSL=500; time step=0.01s; simulating number of
time step ¢=200; and the following performance index
(fitness) that has to be minimized is used

. 2, 2
i=1
Because our focal point is TAFC and its two-step
optimization, we assume that fuzzy sets of the input and
output interfaces are given in advance as 3~uniformly

distributed triangular membership functions with an
overlap of 05 and left unchanged [6]. For more
complex rule bases, 5—uniformly distributed triangular
membership functions are considered too. For the
defuzzification, center of area (COA) method is used.
To reduce the redundant information, the number of
input to each node is fixed as two that can be
increased for high dimensional problem, and only the
number of Level (NL) is varying between 2 and 4 to
find reasonable NL for this example. Table 1 and 2
reveal the averaged best performance index over ten
independent simulations. For the GA, standard version,
including  townarnent multi~point
crossover, is used.

selection  and

Table 1. Averaged best performance and no. of rule
for 10 trials (NFS=3).

NL=2 NL=3 NL=4
After GA 12.31 10.99 10.98
After RSL 10.18 9.90 9.89
No. of rule 53 9.0 9.0

Table 2. Averaged best performance and no. of rule
for 10 trials (NFS=5).

NL=2 NL=3 NL=4
After GA 10.96 10.17 10.15
After RSL 987 9.60 0.58
No. of rule 9.4 236 25.0
Fp
Level 1 °
0.94 098 0:60 0.02 0.97 0.93

—dh g b
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Fig.2. Constructed TAFC (NFS5=3, NL=2).

Fig. 2 shows one of the constructed TAFC for the
number of fuzzy set (NFS)=3 and NL=2. In this figure,
the connections expressed as dotted line mean the
eliminated connections by GA and are not considered for
RSIL.  refinement. The other connection weights are
further refined by RSIL. as already described in Table 1
and 2. In Fig. 2, “#” and “+” of the nodes represent
AND and OR neuron, respectively. If we assume that all
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inputs in the leaves are binary, we can read the rule as
follows:

“if(-Z AND 8-N) OR (6-N AND 0-Z) then F-N"
“if(9-Z AND 6-7) then F-Z

“if(6-P AND 6-7) OR (6-Z AND #-P) then F-P”

From this TAFC, we can take the five rules without
overlapped (redundant) rule, while the maximum rules
(3*) that can include overlapped rule are generated for
NL=3 and 4 as shown in Table 1 and 2. Though
overlapped rule can be included in the maximum rules,
there is no conflict in the rule base because GA
globally optimizes the binary structure of TAFC by
decreasing (8).

Table 3. Averaged results for testing initial conditions
(NFS=3).

NL=2 NL=3 NL=4
Performance 8.86 859 858
No. of failure 0.0 0.0 0.0

Table 4. Averaged results for testing initial conditions

(NFS=5),
NL=2 NL=3 NL=4
Performance 853 827 3.21
No. of failure 0.0 0.0 0.0
To check the walidity of the resulting TAFCs,

simulations for the initial states, (-0.3,~0.3), (-0.3,0.0),
(~0.3,0.3), 0.0,-0.3), 00,03, (0.3-0.3), (0300), and
(0.30.3), are carried out. As a result of this sirmulation,
the averaged performance and the number of failure
(counting the number exceed the houndary conditions)
are illustrated in Table 3 and 4.
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Fig.d. Averaged simulation results for NFS=5 with the
initial condition (6, §)=(-0.3, -0.3)

Fig. 3 and 4 describe the averaged simulation results
using the optimized TAFCs with NL=2 (reduced rules)
and 4 (maximum rules) for each NFS, and initial
conditions are (0.3, 0.3) and (-0.3, -0.3) for NF5=3 and
5, respectively. Obviously, the performance of NL=4 is
better than that of NL=2 for each NFS as described in
Table 1 and 2, but the simulation results in Fig. 3 and
4 indicate that the reduced rules are enough for
balancing the pole.

V. Conclusions

TAFC that has flexible tree structure as well as the
learning and interpreting ability by using fuzzy
neurons has been demonstrated. For the development
of TAFC, two-step optimization, where GA develops
hinary structure and then RSL
binary From the
simulation results, we believe that the proposed TAFC
effectively reduce the number of rules with reasonable
performances by selecting proper NL.

further refines the

connections, has been considered.
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