• Title/Summary/Keyword: Billet shape

Search Result 107, Processing Time 0.024 seconds

A Study on the Optimal Preform Shape Design using FEM and Genetic Algorithm in Hot Forging (열간단조에서 유한요소법과 유전 알고리즘을 이용한 예비성형체의 최적형상 설계 연구)

  • Yeom, Sung-Ho;Lee, Jeong-Ho;Woo, Ho-Kil
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.4
    • /
    • pp.29-35
    • /
    • 2007
  • The main objective of this paper is to propose the optimal design method of forging process using genetic algorithm. Design optimization of forging process was doing about one stage and multi stage. The objective function is considered the filling of die. The chosen design variables are die geometry in multi stage and initial billet shape in one stage. We performed FE analysis to simulated forging process. The optimized preform and initial billet shape was obtained by genetic algorithm and FE analysis. To show the efficiency of GA method in forging problem are solved and compared with published results.

Microstructural Evolution of Electromagnetically Stirred Al alloy Billet During Isothermal Reheating at the Solid-liquid State (전자기 교반한 알루미늄합금 빌렛의 재가열시 고액공존구역에서의 조직변화)

  • Lee, Dock-Young
    • Journal of Korea Foundry Society
    • /
    • v.28 no.3
    • /
    • pp.129-135
    • /
    • 2008
  • The reheating stage of electromagnetically stirred Al billet is a critical factor in the thixoforming process. When reheated to the solid-liquid state, the microstructure evolves to a more globular and more homogeneous structure by a coarsening mechanism, the kinetics depending on the initial microstructure. Microstructural evolution has been characterized by conventional parameters (mean size of particle and shape factor) as a function of holding time in the solid-liquid state. The aim of this study is to report experimental results concerning microstructural evolution in the solid-liquid state of electromagnetically stirred Al billet. The material was elaborated in the form of continuously cast bars solidified with electromagnetic stirring to degenerate the dendritic structure. The choice of the reheating conditions is determined by a dendritic ripening and coalescence mechanism, involving variations of both the shape and size of the particles. The reheating time has to be long enough to allow a minimum degree of spheroidizing, but has to be limited as much as possible in order to avoid excessive ripening. The optimum microstructure was obtained at the reheating temperature of near $584^{\circ}C$ and the holding time of 5 min. The only means of combining high productivity with good casting quality was to use feedstock billets whose microstructure showed rapid transformation characteristics.

A study of the Forging Process Using (알루미늄 주물을 이용한 단조 공정 연구)

  • 김대용;윤성만;오수익
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.138-141
    • /
    • 1997
  • CFM(Cast Forge Method) is widely used in manufacturing industry to produce aluminium parts with good mechanical properties and low production cost. CFM is the process which produces a final products by forging from the initial billet by casting. The study on this paper covers the automatic design method which finds a pertinent shape for initial billet using Fast Fourier Transform, low-pass frequency filtering and FEM simulation of the nonisothermal forging process by DEFORM. These works will give us an information to enhance the low strength of a aluminium casting.

  • PDF

A study on rib-web shaped ring forging using UBET (UBET를 이용한 리브-웨브형 링 단조에 관한 연구)

  • Kim, Y.H.;Bae, W.B.;Nam, K.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.5
    • /
    • pp.134-142
    • /
    • 1994
  • An upper bound elemental technique (UBET) is applied to predict variations of neutral plane and optimal position of the initial billet for rib-wep shaped ring forging. In the analysis, the neutral plane position and velocity fields are determined by minimizing the total power consump- tion with respect to chosen parameters. The degree of die-cavity filling by initial billet-position and the variations of neutral plane by friction condition are investigated. Experiments have been carried out with pure plasticine billets at room temperature. The theoretical predictions of the forging load and the flow pattern are in good agrement with the experimental results.

  • PDF

FEM Analysis of Void Closure Behavior during Open Die Forging of Rectangular Billets (사각 빌렛 자유단조시 내부기공폐쇄거동 유한요소해석)

  • 천명식;류종수;문영훈
    • Transactions of Materials Processing
    • /
    • v.13 no.2
    • /
    • pp.148-153
    • /
    • 2004
  • Finite element analysis of open die forging process to make rectangular billet has been performed in this study. Three dimensional rigid-plastic finite element method was used to analyze the effects of process variables, forging pass design and die configurations on the void closure phenomena to maximize the internal deformation for better structural homogeneity and center-line consolidation of the rectangular billet. The effect of anvil width ratio, anvil pitch, anvil shape and number of pass has been estimated by the degree of void closure ratio. Although it is difficult to optimize process parameters in the operational environments, favourable process conditions are suggested for better product quality.

Evaluation of Formability for Warm Forging of The Bevel Gear on The Lubricants and Surface Roughness (윤활제 및 표면 거칠기에 따른 베벨기어의 온간단조 성형성 평가)

  • Kim Dong-Hwan;Kim Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.3 s.168
    • /
    • pp.21-28
    • /
    • 2005
  • In the hot forging process lubricant influences on frictional condition only, but in the warm forging process it influence on the formability such as dimensional accuracy, filling state and frictional condition and it is important to estimate a lubricating characteristic of lubricants in the warm forging. In this paper, in order to evaluate the formability of billet in warm forging process according to the lubricant and lubricating method, lubricant and lubricating test have been performed using oil-based and water-based lubricant which were widely used in the hot and warm forging processes. The surface roughness of initial billet was measured to evaluate the influence on the formability of billet and the forming load and dimensional accuracy were compared and evaluated. From the experimental results, it can be known that water-based lubricants are more excellent than oil-based lubricants for warm forging of complex shape like a bevel gear. Also, in this study characteristics of deformation have been investigated according to surface treatment of initial billet.

Determination of Welding Pressure in the Porthole Die Extrusion of Improved Al7003 Hollow Section Tubes (포트홀 다이를 이용한 개량된 Al7003 중공압출재의 접합압력결정)

  • Jeong C. S.;Jo H. H.;Kim B. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.74-77
    • /
    • 2000
  • Porthole die extrusion has a great advantage in the forming of hollow section tubes difficult to produce by conventional extrusion with a mandrel on the stem. Because of the complicated structure of die assembly, extrusion process as a forming of hollow section tubes has been investigated experimentally Therefore, analytic approaches that are useful in profitable die design and in the improvement of productivity are inevitably demanded Welding strength is affected by many parameters, which are such as extrusion ratio, extrusion speed, die shape, porthole number, bearing length, billet temperature and mandrel shape. In this paper, the parameters, which are such as billet temperature, bearing length and tube thickness, are examined. The welding pressures are examined through 3D simulation of non steady state and compared with experimental results.

  • PDF

A Study on Preform Design in Plane-Strain Forging (평면변형 단조에서의 예비성형체 설계에 관한 연구)

  • Lee, J.H.;Kang, K.;Bae, C.E.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.5
    • /
    • pp.678-685
    • /
    • 1999
  • A UBET program is developed for determining flash the optimum sizes of preform and initial billet in plane-strain closed-die forging. The program consists of forward and backward tracing processes. In the forward program, flash, die filling and forging load are predicted. In backward tracing process the optimum dimensions of initial billet and preform are determined from the final-shape data based on flash design. Experiments are carried out with pure plasticine billets ar room temperature. The theoretical predictions of forging load and flow pattern are in good agree-ment with the experimental results.

  • PDF

Shape Optimization of Metal Forming and Forging Products using the Stress Equivalent Static Loads Calculated from a Virtual Model (가상모델로부터 산출된 응력 등가정하중을 이용한 금속 성형품 및 단조품의 형상최적설계)

  • Jang, Hwan-Hak;Jeong, Seong-Beom;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1361-1370
    • /
    • 2012
  • A shape optimization is proposed to obtain the desired final shape of forming and forging products in the manufacturing process. The final shape of a forming product depends on the shape parameters of the initial blank shape. The final shape of a forging product depends on the shape parameters of the billet shape. Shape optimization can be used to determine the shape of the blank and billet to obtain the appropriate final forming and forging products. The equivalent static loads method for non linear static response structural optimization (ESLSO) is used to perform metal forming and forging optimization since nonlinear dynamic analysis is required. Stress equivalent static loads (stress ESLs) are newly defined using a virtual model by redefining the value of the material properties. The examples in this paper show that optimization using the stress ESLs is quite useful and the final shapes of a forming and forging products are identical to the desired shapes.