Many advanced products and services are emerging in the market thanks to data-based technologies such as Internet (IoT), Big Data, and AI. The construction of a system for data processing under the IoT network environment is not simple in configuration, and has a lot of restrictions due to a high cost for constructing a high performance server environment. Therefore, in this paper, we will design a development environment for large data analysis computing platform using open source with low cost and practicality. Therefore, this study intends to implement a big data processing system using Raspberry Pi, an ultra-small PC environment, and open source API. This big data processing system includes building a portable server system, building a web server for web mining, developing Python IDE classes for crawling, and developing R Libraries for NLP and visualization. Through this research, we will develop a web environment that can control real-time data collection and analysis of web media in a mobile environment and present it as a curriculum for non-IT specialists.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2013.10a
/
pp.759-760
/
2013
Duaring IT industrial trend time, there are many important concept. Cloud computing, Bigdata issue, etc. One of the most important concept is 'Web 2.0' On educational industry, there is not enough up-dated at Web 2.0 concept. It has still One way study model. So apply 'web 2.0' concept on educational platform, and especially e-learning class, we can apply 'collective intelligence' concept.
Kim, Ki-Hyeon;Seok, Woojin;Moon, Junghoon;Kim, Kwangsoo;Sim, Joonyong
Proceedings of the Korea Information Processing Society Conference
/
2022.11a
/
pp.507-509
/
2022
농업은 우리의 삶에서 빼놓을 수 없는 중요한 분야이며, 농업은 토지를 이용하여 다양한 작물들을 길러 음식을 만드는 기본이라고 말할 수 있다. 이렇게 중요한 농업 분야를 ICT 분야에서 가장 이슈가 되는 기술인 인공지능 기술과 결합하여 스마트팜과 같은 농업의 디지털화를 구축할 수 있다. 이와 같은 스마트팜 구축을 위해서는 기본적으로 다양한 작물의 빅데이터를 제공하고, 이 데이터를 바탕으로 인공지능을 수행하여 다양한 결과를 제공할 수 있다. 하지만 인공지능 연구를 수행하기 위한 시스템 및 플랫폼의 부재라는 문제점이 존재한다. 이러한 문제점을 해결하기 위해 농업 빅데이터 관리 및 인공지능 연구 플랫폼 개발을 위한 과제를 통해 농업 빅데이터를 관리하고 인공지능을 연구자들이 손쉽게 수행할 수 있는 플랫폼을 개발하여 농업 분야의 작물 생산성 향상에 기여하고자 한다.
Six Sigma has been adopted for the last two decades in many industries of manufacturing and service business to implement processs improvement. The methodology has difficulties in discovering target projects in the Define step and in controlling continuous measure and control in the Control step. To address the problem, more advanced system is required to support continuous control and management, and business process management (BPM) can be an effective solution for this problem. In this research, we introduce integrated models of Six Sigma and BPM for the purpose of realizing continuous process improvement, and explain the procedure of analyzing, improving, and monitoring the processes based on the data which has been accumulated in business process execution. It is expected that this integrated approach can maximize business performance by improving and managing business continuously on the integrated platform of two business innovation strategies, Six Sigma and BPM.
Currently, Webtoon Industry is promising as high potential market from it's high growth trend. The best advantage webtoon propose is that webtoon can provide appropriate service to customers with various needs. For this feature, webtoon industry is expanding throughout the world. This situation may give a great chance for authors and webtoon service corporation to export webtoon contents. Also, this situation could be an opportunity for webtoon to become a new "Korean Wave" contents. For successful advance to market, a close analysis for customers of exporting countries. In this research, we collected the data from Naver Webtoon and analyzed the features of webtoons and webtoon subscribers according to countries. With this research, it would be possible to find out specific methods and variables which affect the preference of webtoon subscribers.
Efforts to improve the quality of university education, that is, advanced plans for innovative university education, are needed in the face of changes in educational demand due to rapid changes in new industries and society and the competition for survival due to a rapidly decreasing school-age population with the full-fledged start of the era of the 4th industrial revolution is being demanded. In particular, it is necessary to apply a system for student counseling and guidance management through college life adjustment diagnosis from students entering college to graduation. Accordingly, each university is promoting a project to upgrade a course-linked integrated platform based on core technologies of the 4th industrial revolution era, such as big data and artificial intelligence (AI). Therefore, in this study, based on the field of information security major, we intend to present a plan to advance the student management system for innovative university education.
Kim, Yeongdae;Kim, Ji-Young;Jeong, Wonkyung;Shin, Yongtae
KIPS Transactions on Computer and Communication Systems
/
v.10
no.12
/
pp.329-342
/
2021
The pharmaceutical industry is experiencing a productivity crisis with a low probability of success despite a long period of time and enormous cost. As a strategy to solve the productivity crisis, the use cases of Artificial Intelligence(AI) and Bigdata are increasing worldwide and tangible results are coming out. However, domestic pharmaceutical companies are taking a wait-and-see attitude to adopt AI platform for drug research. This study proposed a research model that combines the Value-based Adoption Model and the Innovation Resistance Model to empirically study the effect of value perception and resistance factors on adopting AI Platform. As a result of empirical verification, usefulness, knowledge richness, complexity, and algorithmic opacity were found to have a significant effect on perceived values. And, usefulness, knowledge richness, algorithmic opacity, trialability, technology support infrastructure were found to have a significant effect on the innovation resistance.
In a big data platform, association rule mining applications could bring some benefits. For instance, in a agricultural big data platform, the association rule mining application could recommend specific products for farmers to grow, which could increase income. The key process of the association rule mining is the frequent itemsets mining, which finds sets of products accompanying together frequently. Former researches about this issue, e.g. Apriori, are not satisfying enough because huge possible sets can cause memory to be overloaded. In order to deal with it, SON algorithm has been proposed, which divides the considered set into many smaller ones and handles them sequently. But in a single machine, SON algorithm cause heavy time consuming. In this paper, we present a method to find association rules in our Hadoop based big data platform, by parallelling SON algorithm. The entire process of association rule mining including pre-processing, SON algorithm based frequent itemset mining, and association rule finding is implemented on Hadoop based big data platform. Through the experiment with real dataset, it is conformed that the proposed method outperforms a brute force method.
Song, Dong Ho;Shin, Ji Ae;In, Yean Jin;Lee, Wan Gon;Lee, Kang Se
Journal of the Korean Data and Information Science Society
/
v.26
no.5
/
pp.1129-1139
/
2015
Inference process generates additional triples from knowledge represented in RDF triples of semantic web technology. Tens of million of triples as an initial big data and the additionally inferred triples become a knowledge base for applications such as QA(question&answer) system. The inference engine requires more computing resources to process the triples generated while inferencing. The additional computing resources supplied by underlying resource pool in cloud computing can shorten the execution time. This paper addresses an algorithm to allocate the number of computing nodes "elastically" at runtime on Hadoop, depending on the size of knowledge data fed. The model proposed in this paper is composed of the layered architecture: the top layer for applications, the middle layer for distributed parallel inference engine to process the triples, and lower layer for elastic Hadoop and server visualization. System algorithms and test data are analyzed and discussed in this paper. The model hast the benefit that rich legacy Hadoop applications can be run faster on this system without any modification.
As the utilization of chatbots grows and the AI market grows, many companies are interested. And everybody is spurring growth by offering chatbot build services so that they can create chatbots. This makes chatbots easier to service on the messenger platform, which is changing the existing application market. In this paper, we present a methodology for designing and implementing existing DB-based applications as instant messenger platform-based applications, and summarize what to consider in actual implementation to provide an optimal system structure. According to this methodology, we design and implement a chatbot that serves as an teaching advisor who provides information to the students in the curriculum. The implemented application objectively visualizes the user's desired information from the user's point of view and delivers it through the interactive interface quickly and intuitively. By implementing these services and real service, it is predicted that DB-based information providing applications will be implemented as chatbots and will be changed to bi-directional communication through an interactive interface. it is predicted that DB-based information providing applications will be implemented as chatbots and will be changed to bi-directional communication through an interactive interface. Enterprise legacy application will take chatbot technology as one of important digital transformation initiative.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.