도시 환경문제 및 개발사업 환경영향 저감을 위하여 자연적 물 순환 기능을 가진 다양한 LID가 적용되고 있다. 그러나 LID 시설의 과도한 침투와 증발산은 LID 내부 토양을 건조화시켜 식물과 미생물 활동성을 떨어뜨리고 환경저감 능력을 감소시킨다. 본 연구는 LID 시설의 관리 방안을 도출하기 위하여 복합적인 센서를 적용한 실시간 측정 시스템을 개발하고자 하였다. 측정 가능한 센서와 사물인터넷(IoT) 적용 실험은 아크릴 상자에 형상화한 인공습지에서 수행되었다. 적용되는 센서는 분산형으로 설치되는 LID를 고려하여 저비용으로 구축하고자 하였으며 비교적 저렴하면서 상용화되어있는 아두이노와 라즈베리 파이를 기반으로 하였다. 그리고 LID 시설의 현재 상태와 유지관리 및 이상기후 시 영향을 분석하기 위해 복합적인 센서 측정 개발에 목표를 두었다. 센서는 풍향·풍속, 강우량, 이산화탄소, 미세먼지, 온도·습도, 산성도, 위치 정보 등을 실시간으로 측정하도록 하였다. 또한 측정된 데이터의 수집, 전송 및 결과 확인을 위하여 데이터 수집 장치, 저장 서버 프로그램 및 PC와 모바일 활용 결과 확인 프로그램을 개발하였다. 각 센서를 통해 얻은 측정값들은 Wifi 모듈을 통해 관리 서버로 전달되고 실시간으로 데이터베이스 서버에 저장된다. 본 연구에서 수행한 4개월간의 측정 결과를 분석한 결과 LID 시설에 ICT 기술 적용의 안정성과 적용 가능성을 확인하였다. 실시간으로 측정된 값은 LID 시설의 기능 평가 및 유지관리 방안 도출을 위한 빅데이터 활용이 가능한 것으로 나타났다.
대용량(High-throughput) 형태로 얻어진 cDNA 마이크로어레이 데이터에 다양한 데이터 마이닝 기법을 적용하면 서로 다른 조직에서 추출한 유전자의 발현정도를 비교할 수 있고 정상세포와 암세포에서 발현량의 차이를 보이는 DEG(Differently Expression Gene) 유전자를 추출할 수 있다. 이들을 이용하여 병을 진단할 수 있을 뿐만 아니라, 암의 진행 단계(Cancer Stage)에 따른 치료 방법을 결정할 수 있다. 마이크로어레이를 기반으로 한 대부분의 암 분류자는 기계학습 기법을 이용하여 암 관련 유전자를 추출하여, 이들 유전자를 총체적으로 이용하여 독립 샘플의 클래스(암, 정상)를 판정한다. 하지만 유전자의 발현량의 차이뿐만 아니라 유전자와 유전자의 상관관계의 변화가 질병 진단에 활용될 수 있다. 대부분의 질병은 단독 유전자의 변이에 의한 것이 아니라 유전자의 모듈로 이루어진 유전자조절네트워크의 변이에 의한 것이기 때문이다. 본 논문에서는 조건에 따라 특이적 관계를 나타내는 유전자 쌍을 식별하여, 이들 유전자 쌍을 이용한 유전자 분류 모듈을 생성한다. 분류 모듈을 이용한 암 분류 방법이 기존의 암 분류 방법보다 높은 정확도로 암과정상 샘플을 분류함을 보여주고 있다. 분류 모듈을 구성하는 유전자의 수가 상대적으로 적으므로 임상키트로의 개발도 고려할 수 있다. 향후 분류 모듈에 속하는 유전자의 기능적 검증을, GO(Gene Ontology)를 활용함으로서, 밝혀지지 않은 새로운 암 관련 유전자를 식별하고, 분류 모듈을 확대하여 암 특이적 유전자조절네트워크 구성에 활용할 계획이다.
최근 빅데이터 과학은 사회현상 모델링을 통한 예측은 물론 강화학습과 결합하여 산업분야 자동제어까지 응용범위가 확대되고 있다. 이러한 추세 가운데 이미지 영상 데이터 활용연구는 화학, 제조, 농업, 바이오산업 등 다양한 산업분야에서 활발히 진행되고 있다. 본 논문은 신경망 기술을 활용하여 영상 데이터의 시맨틱 분할 성능을 개선하고자, U-Net의 계산효율성을 개선한 DeepU-Net 신경망에 AutoML 강화학습 알고리즘을 구현한 NASNet을 결합하였다. BRATS2015 MRI 데이터을 활용해 성능 검증을 수행하였다. 학습을 수행한 결과 DeepU-Net은 U-Net 신경망 구조보다 계산속도 향상 뿐 아니라 예측 정확도도 동등 이상의 성능이 있음을 확인하였다. 또한 이미지 시맨틱 분할 성능을 개선하기 위해서는 일반적으로 적용하는 드롭아웃 층을 빼고, DeepU-Net에 강화학습을 통해 구한 커널과 필터 수를 신경망의 하이퍼 파라미터로 선정했을 때 DeepU-Net보다 학습정확도는 0.5%, 검증정확도는 0.3% 시맨틱 분할 성능을 개선할 수 있었다. 향후 본 논문에서 시도한 자동화된 신경망을 활용해 MRI 뇌 영상진단은 물론, 열화상 카메라를 통한 이상진단, 비파괴 검사 진단, 화학물질 누출감시, CCTV를 통한 산불감시 등 다양한 분야에 응용될 수 있을 것으로 판단된다.
최근 머신러닝 및 딥러닝 기법을 활용한 주식 가격 예측 연구가 다양하게 이루어지고 있다. 그 중에서도 최근에는 주식 매수 및 매도 주문 정보를 담고 있는 호가창을 이용하여 주가를 예측하려는 연구가 시도되고 있다. 하지만 호가창을 활용한 연구는 대부분 가장 최근 일정 기간 동안의 호가창 추이만을 고려하며, 호가창의 중기 추이와 단기 추이를 같이 고려하는 연구는 거의 진행되지 않았다. 이에 본 논문에서는 호가창의 중기와 단기 추이를 모두 고려하여 주가 등락을 보다 정확히 예측하는 딥러닝 기반 예측 모델을 제안한다. 더욱이 본 논문에서 제안하는 모델은 중단기 호가창 정보 외에도 해당 종목에 대한 동기간 뉴스 헤드라인까지 고려하여 기업의 정성적 상황까지 주가 예측에 반영한다. 본 논문에서 제안하는 딥러닝 기반 예측 모델은 호가창 변화의 특징을 합성곱 신경망으로 추출하고 뉴스 헤드라인의 특징을 Word2vec을 이용하여 추출한 뒤, 이들 정보를 결합하여 특정 기업 주식의 다음 날 등락 여부를 예측한다. 실제 NASDAQ 호가창 데이터와 뉴스 헤드라인 데이터를 사용하여 제안 모델로 5개 종목(Amazon, Apple, Facebook, Google, Tesla)의 일일 주가 등락을 예측한 결과, 제안 모델은 기존 모델에 비해 정확도를 최대 17.66%p, 평균 14.47%p 향상시켰다. 또한 해당 모델로 모의 투자를 수행한 결과, 21 영업일 동안 종목에 따라 최소 $492.46, 최대 $2,840.83의 수익을 얻었다.
목적 : 본 연구의 목적은 장애 중증도 수준뿐만 아니라 장애 유형 또한 함께 고려하여 장애인의 고용현황을 분석함으로써 기존의 장애 중증도 수준에 기반한 의학적 손상을 기준으로 하여 직업적 능력을 고려하는 것에 한계가 있음을 지적하는 데에 있다. 연구방법 : 장애인고용공단(2019)에서 조사한 장애인 고용패널조사 2차 웨이브 4차 조사 자료를 사용하였다. 독립변수는 장애인의 장애 중증도와 장애 유형, 종속변수는 고용여부로 하여 장애 중증도에 따른 장애 유형의 고용가능성 오즈비를 로지스틱 회귀분석으로 산출하였다. 결과 : 장애정도가 심한 군은 고용가능성은 관련 변수들을 보정했을 때, 신체외부장애 유형에 비해 신체내부장애의 고용가능성이 0.413(95% CI: 0.271-0.629)배로 유의하게 낮았고(p<.001), 장애정도가 심하지 않은 군에서는 신체외부장애에 비해 신체내부장애가 0.475(95% CI: 0.327-0.690)배로 고용가능성이 낮았다(p<.001). 결론 : 장애 중증도 수준이 같다 하더라도 장애 유형에 따라 고용가능성이 달라질 수 있음을 확인하였다. 장애 유형과 중증도를 모두 고려하여 고용가능성의 편차를 줄일 수 있는 판정 기준의 마련이 필요하다.
코로나19의 확산으로 도심의 대량 수송을 책임지는 대중교통 수요가 급격하게 감소하였다. 본 연구에서 코로나19 확산 전 2019년과 확산이 시작된 2020년의 부산광역시 대중교통 카드 데이터를 빅데이터 분석한 결과, 일 평균 92만 통행이 감소하는 것으로 나타났다. 또한, 개별 정류장 단위로 조사한 코로나19 확산 전후의 대중교통 통행량을 읍면동 단위로 통합한 후, 읍면동 단위의 대중교통 통행량 증감 비율을 종속변수로 하고 읍면동의 다양한 특성을 독립변수로 하는 순서형 로지스틱 회귀분석을 통해 대중교통 411수요변화에 유의미한 영향을 미치는 요인을 분석하였다. 그 결과, 기초생활수급자의 비율, 공업지의 면적 비율, 그리고 등교 통행 비율이 높은 읍면동은 코로나19의 확산에도 불구하고 대중교통에 대한 의존도가 높아 대중교통의 수요변화가 크게 나타나지 않았지만, 철도수단 분담률이 높은 읍면동은 코로나19 확산에 따라 대중교통 이용자 수가 큰 폭으로 감소하는 것으로 나타났다. 따라서, 코로나19와 같은 응급 상황에 효율적으로 대응하기 위해서는 획일적인 교통정책보다는 지역의 특성을 고려한 차별적인 교통정책의 수립과 집행이 필요하다.
건설공사는 다양한 리스크에 노출되어 있으며, 건설공사의 리스크는 더욱 증가하는 경향을 보이고 있다. 건설공사의 리스크 증가는 건설사의 리스크 예측 및 대응의 중요성을 더욱 증가시키고 있다. 건설사가 건설공사의 리스크를 대응하는 방법 중 하나는 리스크 비용을 사전에 예측 또는 산정하여 이를 실행예산에 반영하는 것이다. 리스크 비용과 관련하여 다양한 연구들이 수행되어 왔지만, 국내 건설사의 실행예산 편성 시 리스크 비용 산정에 관한 인식과 실태에 관한 분석은 미흡한 것으로 나타났다. 본 연구의 목적은 종합건설사의 실행예산 편성 시 리스크 비용 산정과 관련된 인식과 실태를 조사·분석하여 주요 특징 및 시사점을 도출하는데 있다. 본 연구의 주요 결과를 요약하면 실행예산 편성 시 리스크 비용 반영의 중요성에 대한 인식은 상당히 높았으나, 상대적으로 리스크 비용을 산정하는 수준은 상대적으로 미흡한 것으로 나타났다. 리스크 비용 산정을 효과적으로 수행하기 위해서는 실적 데이터, 가이드라인, 전사적 표준절차 등 실무기반이 구축되어야 하며, 충분한 견적기간도 할애될 필요가 있었다. 또한 리스크 비용 산정을 위해 빅데이터 분석기법을 포함한 정교한 분석기법의 활용에 대한 관심은 높지만 현재 준비 및 활용 수준은 낮은 것으로 나타나 이에 대한 실무 적용성을 높이기 위한 연구개발이 필요하다고 할 수 있다.
본 연구는 복부가 비만한 노년 여성의 의복의 패턴설계를 위한 기초 자료를 제공하기 위한 목적으로 수행되었으며 이들의 체형특성을 분석하고 일반 노년 여성과의 상반신 및 하반신 체형특성의 차이점을 파악하고자 하였다. 연구대상은 60세 이상 서울 및 서울 근교에 거주하는 노년 여성 318명-복부비만 251명, 일반인 67명-이며 직접측정을 실시하였다. 복부비만의 기준은 허리엉덩이둘레비(WHR)가 0.85 이상인 피험자로 하였다. 높이항목, 두께항목, 너비항목, 길이항목 및 몸무게로 구성된 총 33개 측정치 및 측정치를 토대로 한 계산치 및 지수치를 이용하여 기술통계분석, 상관분석, T검정을 실시함으로써 이들의 복부돌출요인에 따라 의복구성에 고려해야 할 체형특성을 파악하고, 이를 일반 노년 여성과 비교분석하였다. 연구결과 복부비만 노인은 일반 노인보다 높이항목과 어깨너비 등 어깨관련항목을 제외한 두께, 둘레, 길이 항목에서 유의한 차이를 보이며, 로러지수와 버벡지수, 체간부의 편평률에서도 유의차를 보여 전체적 인 비만도가 높으며 체간부 형태가 원통형을 나타낸다. 또한 복부비만 노년 여성의 경우 상관관계 분석결과 엉덩이둘레보다 배둘레나 엉덩이외포둘레가 패턴 설계에 필요한 주요 항목들과 더 높은 선형적 상관성을 보이므로 패턴의 기준항목 설정시 이를 고려하여 제작하여야 할 것이다.
인공지능 기술의 급속한 발전과 함께 빅데이터의 상당 부분을 차지하는 비정형 텍스트 데이터로부터 의미있는 정보를 추출하기 위한 다양한 연구들이 활발히 진행되고 있다. 비즈니스 인텔리전스 분야에서도 새로운 시장기회를 발굴하거나 기술사업화 주체의 합리적 의사결정을 돕기 위한 많은 연구들이 이뤄져 왔다. 본 연구에서는 기업의 성공적인 사업 추진을 위해 핵심적인 정보 중의 하나인 시장규모 정보를 도출함에 있어 기존에 제공되던 범위보다 세부적인 수준의 제품군별 시장규모 추정이 가능하고 자동화된 방법론을 제안하고자 한다. 이를 위해 신경망 기반의 시멘틱 단어 임베딩 모델인 Word2Vec 알고리즘을 적용하여 개별 기업의 생산제품에 대한 텍스트 데이터를 벡터 공간으로 임베딩하고, 제품명 간 코사인 거리(유사도)를 계산함으로써 특정한 제품명과 유사한 제품들을 추출한 뒤, 이들의 매출액 정보를 연산하여 자동으로 해당 제품군의 시장규모를 산출하는 알고리즘을 구현하였다. 실험 데이터로서 통계청의 경제총조사 마이크로데이터(약 34만 5천 건)를 이용하여 제품명 텍스트 데이터를 벡터화 하고, 한국표준산업분류 해설서의 산업분류 색인어를 기준으로 활용하여 코사인 거리 기반으로 유사한 제품명을 추출하였다. 이후 개별 기업의 제품 데이터에 연결된 매출액 정보를 기초로 추출된 제품들의 매출액을 합산함으로써 11,654개의 상세한 제품군별 시장규모를 추정하였다. 성능 검증을 위해 실제 집계된 통계청의 품목별 시장규모 수치와 비교한 결과 피어슨 상관계수가 0.513 수준으로 나타났다. 본 연구에서 제시한 모형은 의미 기반 임베딩 모델의 정확성 향상 및 제품군 추출 방식의 개선이 필요하나, 표본조사 또는 다수의 가정을 기반으로 하는 전통적인 시장규모 추정 방법의 한계를 뛰어넘어 텍스트 마이닝 및 기계학습 기법을 최초로 적용하여 시장규모 추정 방식을 지능화하였다는 점, 시장규모 산출범위를 사용 목적에 따라 쉽고 빠르게 조절할 수 있다는 점, 이를 통해 다양한 분야에서 수요가 높은 세부적인 제품군별 시장정보 도출이 가능하여 실무적인 활용성이 높다는 점에서 의의가 있다.
IT기술의 고속 발전에 따라 사용자들이 기술을 사용하는 방식에 큰 변화가 생기고 있다. 전통적인 서비스 응용과 저효율의 데이터를 처리하는 방식은 사용자의 요구를 만족할 수 없다. 사용자들이 데이터의 중요성을 알게 되었고, 빅 데이터에 관한 처리와 저장기술은 오늘날의 인터넷 회사의 주요 연구방향이 되고 있다. 115 네트워크 디스크는 중국에서 폭넓게 사용되기 시작하였고 각 인터넷 회사들은 클라우드 서비스 시장을 쟁탈하는 싸움에 참여하기 시작하였다. 중국의 클라우드 서비스는 아직도 스토리지 서비스 위주이지만, 이 기능을 바탕으로 확장하는 서비스 내용도 사용자의 인정을 받고 있으며, 사용자들이 이러한 새로운 서비스 방식을 사용하는 것을 시도하고 있다. 그래서 어떻게 하면 사용자들이 지속적으로 클라우드 서비스를 사용 할 것인지에 관한 연구방향이 더욱 필요해 졌다. 하나의 전통적인 정보 시스템에 대해, 학자들은 대개 TAM(Technology acceptance model)모형과 통계학을 결합하여 이 시스템에 대한 사용자들의 태도를 분석하고 검증한다. 하지만 기본적인 TAM모형은 날이 갈수록 방대해지는 시스템의 규모를 만족 할 수 없게 되었다. 따라서 TAM모형에 대한 적당한 확장과 조절이 필요하게 되었다. 본 연구는 중국의 개인용 클라우드 서비스 사용자의 지속적인 사용의도에 영향을 미치는 요인에 관한 실증분석을 목표로 브랜드 영향력, 하드웨어 환경 등 외부 변수를 추가하고, 중국 클라우드 사용자를 대상으로 설문 조사를 진행했으며, 본 논문에서 분석을 통해 수정된 모형에 관한 가설을 검증하였다. 본 연구는 주로 중국의 4개 주요 도시의 210명의 클라우드 서비스 사용자를 대상으로 인터넷 설문 조사를 실행하였다. 설문 데이터를 통해 3개의 외부 변수에 대한 분석을 진행하였고, 이 3개의 외부 변수를 세분화하고 외부요소에 영향을 주는 주요 원인을 찾아냈다. 이를 바탕으로 개인 클라우드 서비스 사용자들이 서비스를 지속적으로 사용 할 수 있는 태도를 강화 할 수 있는 것에 유용한 의견을 제시하였다. 이러한 의견들은 중국사용자들을 대상으로 하는 주요 서비스를 제공 하는 회사에게 향후 서비스 방향을 참고할 수 있는 정보를 제공한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.