• Title/Summary/Keyword: Big-data Analysis

Search Result 3,421, Processing Time 0.033 seconds

Big Data Smoothing and Outlier Removal for Patent Big Data Analysis

  • Choi, JunHyeog;Jun, Sunghae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.8
    • /
    • pp.77-84
    • /
    • 2016
  • In general statistical analysis, we need to make a normal assumption. If this assumption is not satisfied, we cannot expect a good result of statistical data analysis. Most of statistical methods processing the outlier and noise also need to the assumption. But the assumption is not satisfied in big data because of its large volume and heterogeneity. So we propose a methodology based on box-plot and data smoothing for controling outlier and noise in big data analysis. The proposed methodology is not dependent upon the normal assumption. In addition, we select patent documents as target domain of big data because patent big data analysis is a important issue in management of technology. We analyze patent documents using big data learning methods for technology analysis. The collected patent data from patent databases on the world are preprocessed and analyzed by text mining and statistics. But the most researches about patent big data analysis did not consider the outlier and noise problem. This problem decreases the accuracy of prediction and increases the variance of parameter estimation. In this paper, we check the existence of the outlier and noise in patent big data. To know whether the outlier is or not in the patent big data, we use box-plot and smoothing visualization. We use the patent documents related to three dimensional printing technology to illustrate how the proposed methodology can be used for finding the existence of noise in the searched patent big data.

Challenges and Opportunities of Big Data

  • Khalil, Md Ibrahim;Kim, R. Young Chul;Seo, ChaeYun
    • Journal of Platform Technology
    • /
    • v.8 no.2
    • /
    • pp.3-9
    • /
    • 2020
  • Big Data is a new concept in the global and local area. This field has gained tremendous momentum in the recent years and has attracted attention of several researchers. Big Data is a data analysis methodology enabled by recent advances in information and communications technology. However, big data analysis requires a huge amount of computing resources making adoption costs of big data technology. Therefore, it is not affordable for many small and medium enterprises. We survey the concepts and characteristics of Big Data along with a number of tools like HADOOP, HPCC for managing Big Data. It also presents an overview of big data like Characteristics of Big data, big data technology, big data management tools etc. We have also highlighted on some challenges and opportunities related to the fields of big data.

  • PDF

A Case Study on Big Data Analysis Systems for Policy Proposals of Engineering Education (공학교육 정책제안을 위한 빅데이터 분석 시스템 사례 분석 연구)

  • Kim, JaeHee;Yoo, Mina
    • Journal of Engineering Education Research
    • /
    • v.22 no.5
    • /
    • pp.37-48
    • /
    • 2019
  • The government has tried to develop a platform for systematically collecting and managing engineering education data for policy proposals. However, there have been few cases of big data analysis platform for policy proposals in engineering education, and it is difficult to determine the major function of the platform, the purpose of using big data, and the method of data collection. This study aims to collect the cases of big data analysis systems for the development of a big data system for educational policy proposals, and to conduct a study to analyze cases using the analysis frame of key elements to consider in developing a big data analysis platform. In order to analyze the case of big data system for engineering education policy proposals, 24 systems collecting and managing big data were selected. The analysis framework was developed based on literature reviews and the results of the case analysis were presented. The results of this study are expected to provide from macro-level such as what functions the platform should perform in developing a big data system and how to collect data, what analysis techniques should be adopted, and how to visualize the data analysis results.

Big Data Patent Analysis Using Social Network Analysis (키워드 네트워크 분석을 이용한 빅데이터 특허 분석)

  • Choi, Ju-Choel
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.2
    • /
    • pp.251-257
    • /
    • 2018
  • As the use of big data is necessary for increasing business value, the size of the big data market is getting bigger. Accordingly, it is important to apply competitive patents in order to gain the big data market. In this study, we conducted the patent analysis based keyword network to analyze the trend of big data patents. The analysis procedure consists of big data collection and preprocessing, network construction, and network analysis. The results of the study are as follows. Most of big data patents are related to data processing and analysis, and the keywords with high degree centrality and between centrality are "analysis", "process", "information", "data", "prediction", "server", "service", and "construction". we expect that the results of this study will offer useful information in applying big data patent.

A Big Data-Driven Business Data Analysis System: Applications of Artificial Intelligence Techniques in Problem Solving

  • Donggeun Kim;Sangjin Kim;Juyong Ko;Jai Woo Lee
    • The Journal of Bigdata
    • /
    • v.8 no.1
    • /
    • pp.35-47
    • /
    • 2023
  • It is crucial to develop effective and efficient big data analytics methods for problem-solving in the field of business in order to improve the performance of data analytics and reduce costs and risks in the analysis of customer data. In this study, a big data-driven data analysis system using artificial intelligence techniques is designed to increase the accuracy of big data analytics along with the rapid growth of the field of data science. We present a key direction for big data analysis systems through missing value imputation, outlier detection, feature extraction, utilization of explainable artificial intelligence techniques, and exploratory data analysis. Our objective is not only to develop big data analysis techniques with complex structures of business data but also to bridge the gap between the theoretical ideas in artificial intelligence methods and the analysis of real-world data in the field of business.

A Study on Big Data Analytics Services and Standardization for Smart Manufacturing Innovation

  • Kim, Cheolrim;Kim, Seungcheon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.3
    • /
    • pp.91-100
    • /
    • 2022
  • Major developed countries are seriously considering smart factories to increase their manufacturing competitiveness. Smart factory is a customized factory that incorporates ICT in the entire process from product planning to design, distribution and sales. This can reduce production costs and respond flexibly to the consumer market. The smart factory converts physical signals into digital signals, connects machines, parts, factories, manufacturing processes, people, and supply chain partners in the factory to each other, and uses the collected data to enable the smart factory platform to operate intelligently. Enhancing personalized value is the key. Therefore, it can be said that the success or failure of a smart factory depends on whether big data is secured and utilized. Standardized communication and collaboration are required to smoothly acquire big data inside and outside the factory in the smart factory, and the use of big data can be maximized through big data analysis. This study examines big data analysis and standardization in smart factory. Manufacturing innovation by country, smart factory construction framework, smart factory implementation key elements, big data analysis and visualization, etc. will be reviewed first. Through this, we propose services such as big data infrastructure construction process, big data platform components, big data modeling, big data quality management components, big data standardization, and big data implementation consulting that can be suggested when building big data infrastructure in smart factories. It is expected that this proposal can be a guide for building big data infrastructure for companies that want to introduce a smart factory.

Big Data Analysis Using Principal Component Analysis (주성분 분석을 이용한 빅데이터 분석)

  • Lee, Seung-Joo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.6
    • /
    • pp.592-599
    • /
    • 2015
  • In big data environment, we need new approach for big data analysis, because the characteristics of big data, such as volume, variety, and velocity, can analyze entire data for inferring population. But traditional methods of statistics were focused on small data called random sample extracted from population. So, the classical analyses based on statistics are not suitable to big data analysis. To solve this problem, we propose an approach to efficient big data analysis. In this paper, we consider a big data analysis using principal component analysis, which is popular method in multivariate statistics. To verify the performance of our research, we carry out diverse simulation studies.

A Big Data Preprocessing using Statistical Text Mining (통계적 텍스트 마이닝을 이용한 빅 데이터 전처리)

  • Jun, Sunghae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.5
    • /
    • pp.470-476
    • /
    • 2015
  • Big data has been used in diverse areas. For example, in computer science and sociology, there is a difference in their issues to approach big data, but they have same usage to analyze big data and imply the analysis result. So the meaningful analysis and implication of big data are needed in most areas. Statistics and machine learning provide various methods for big data analysis. In this paper, we study a process for big data analysis, and propose an efficient methodology of entire process from collecting big data to implying the result of big data analysis. In addition, patent documents have the characteristics of big data, we propose an approach to apply big data analysis to patent data, and imply the result of patent big data to build R&D strategy. To illustrate how to use our proposed methodology for real problem, we perform a case study using applied and registered patent documents retrieved from the patent databases in the world.

Neo-Chinese Style Furniture Design Based on Semantic Analysis and Connection

  • Ye, Jialei;Zhang, Jiahao;Gao, Liqian;Zhou, Yang;Liu, Ziyang;Han, Jianguo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.8
    • /
    • pp.2704-2719
    • /
    • 2022
  • Lately, neo-Chinese style furniture has been frequently noticed by product design professionals for the big part it played in promoting traditional Chinese culture. This article is an attempt to use big data semantic analysis method to provide effective design research method for neo-Chinese furniture design. By using big data mining program TEXTOM for big data collection and analysis, the data obtained from typical websites in a set time period will be sorted and analyzed. On the basis of "neo-Chinese furniture" samples, key data will be compared, classification analysis of overall data, and horizontal analysis of typical data will be performed by the methods of word frequency analysis, connection centrality analysis, and TF-IDF analysis. And we tried to summarize according to the related views and theories of the design. The research results show that the results of data analysis are close to the relevant definitions of design. The core high-frequency vocabulary obtained under data analysis, such as popular, furniture, modern, etc., can provide a reasonable and effective focus of attention for the designs. The result obtained through the systematic sorting and summary of the data can be a reliable guidance in the direction of our design. This research attempted to introduce related big data mining semantic analysis methods into the product design industry, to supply scientific and objective data and channels for studies on design, and to provide a case on the practical application of big data analysis in the industry.

The Characteristics of Tools for Big Data Analysis (빅데이터 분석도구의 특성)

  • Kim, Do-Goan;So, Soon-Hu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.114-116
    • /
    • 2016
  • Today, the analysis of big data hae been used as an essential tool for finding customers' needs. Various big-data analysis sites have provided the analysis results with their own forms and styles according to their service and characteristics. Therefore, to use the analysis results for marketing fields, we have to understand the major characteristics on big data analysis tools. In this point, this study attempts to compare the characteristics of big data analysis results and styles from big data analysis sites.

  • PDF