• Title/Summary/Keyword: Big Data Usage

Search Result 174, Processing Time 0.032 seconds

The Effect of Big Data-based Fashion Shopping Applications on App Users' Continuous Usage Intention

  • Hong, Hyekyung;Shin, Yeonseo;Lee, MiYoung
    • Journal of Fashion Business
    • /
    • v.22 no.6
    • /
    • pp.83-93
    • /
    • 2018
  • The purpose of this research is to investigate the characteristics of big data-based fashion shopping (BDFS) application, perceived usefulness, and expectation confirmation that influence the continuous usage intention of BDFS application users based on the expectation-confirmation model. A survey was conducted with female consumers in their 20s, who are living in Seoul and Incheon area and have used BDFS applications, A total of 182 responses were used for the data analysis. Five hypotheses were proposed, and regression analyses were conducted to test those hypotheses. The results indicated that the users' perceived usefulness increased with the increase of accuracy and personalization characteristics of the app and the expectation confirmation. The result suggested that it is essential to provide accurate information for users to feel useful and to develop the personalized offerings and services which can be the biggest strength of the big-data based mobile fashion store. It was also found that continuous usage intention increases with increased perceived usefulness and expectation confirmation. This result suggests that expectations can play a critical role in perceiving the usefulness of BDFS applications and the user's expectation confirmation also significantly affected the users' continuous usage intention.

A Study on Demand-Side Resource Management Based on Big Data System (빅데이터 기반의 수요자원 관리 시스템 개발에 관한 연구)

  • Yoon, Jae-Weon;Lee, Ingyu;Choi, Jung-In
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.8
    • /
    • pp.1111-1115
    • /
    • 2014
  • With the increasing interest of a demand side management using a Smart Grid infrastructure, the demand resources and energy usage data management becomes an important factor in energy industry. In addition, with the help of Advanced Measuring Infrastructure(AMI), energy usage data becomes a Big Data System. Therefore, it becomes difficult to store and manage the demand resources big data using a traditional relational database management system. Furthermore, not many researches have been done to analyze the big energy data collected using AMI. In this paper, we are proposing a Hadoop based Big Data system to manage the demand resources energy data and we will also show how the demand side management systems can be used to improve energy efficiency.

Analyzing Smart Grid Energy Data using Hadoop Based Big Data System (하둡기반 빅데이터 시스템을 이용한 스마트그리드 전력데이터 분석)

  • Cho, YoungTak;Lee, WonJin;Lee, Ingyu;On, Byung-Won;Choi, Jung-In
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.2
    • /
    • pp.85-91
    • /
    • 2015
  • With the increasing popularity of Smart Grid infrastructure, it is much easier to collect energy usage data using AMI (Advanced Measuring Instrument) from residential housing, buildings and factories. Several researches have been done to improve an energy efficiency by analyzing the collected energy usage data. However, it is not easy to store and analyze the energy data using a traditional relational database management system since the data size grows exponentially with an increasing popularity of Smart grid infrastructure. In this paper, we are proposing a Hadoop based Big data system to store and analyze energy usage data. Based on our limited experiments, Hadoop based energy data analysis is three times faster than that of a relational database management system based approach with the current system.

A Study on an Integrative Model for Big Data System Adoption : Based on TOE, DOI and UTAUT (빅데이터 시스템 도입을 위한 통합모형의 연구 : TOE, DOI, UTAUT를 기반으로)

  • Lee, Sunwoo;Lee, Heesang
    • Journal of Information Technology Applications and Management
    • /
    • v.21 no.4_spc
    • /
    • pp.463-483
    • /
    • 2014
  • Data are dramatically increased and big data technology is spotlighted innovative technology among the latest information technologies. Organizations are interested in adoption of big data system to analyze various data format and to identify new business opportunity. The purpose of this study is to build a unified model for a system adoption through analysis of impact that affects behavioral intention and usage behavior of using big data. This study in addition to Technology-Organization-Environment (TOE), that is used the introduction of organizational studies, and Diffusion of Innovation (DOI) have implemented an extended unified model including the unified theory of acceptance and use of technology (UTAUT) that is usually used in personal level adoption study. The hypothesis was set up after implementing research model, and then got 411 effective survey data to target the member of organizations. As a result, all models (UTAUT, TOE, DOI) are affect to behavioral intention and usage behavior. It is verified that the suggested unified model was appropriate.

A Study on Phon Call Big Data Analytics (전화통화 빅데이터 분석에 관한 연구)

  • Kim, Jeongrae;Jeong, Chanki
    • Journal of Information Technology and Architecture
    • /
    • v.10 no.3
    • /
    • pp.387-397
    • /
    • 2013
  • This paper proposes an approach to big data analytics for phon call data. The analytical models for phon call data is composed of the PVPF (Parallel Variable-length Phrase Finding) algorithm for identifying verbal phrases of natural language and the word count algorithm for measuring the usage frequency of keywords. In the proposed model, we identify words using the PVPF algorithm, and measure the usage frequency of the identified words using word count algorithm in MapReduce. The results can be interpreted from various viewpoints. We design and implement the model based HDFS (Hadoop Distributed File System), verify the proposed approach through a case study of phon call data. So we extract useful results through analysis of keyword correlation and usage frequency.

Analysis of Electrical Loads in the Urban Railway Station by Big Data Analysis (빅데이터분석을 통한 도시철도 역사부하 패턴 분석)

  • Park, Jong-young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.3
    • /
    • pp.460-466
    • /
    • 2018
  • For the efficient energy consumption in an urban railway station, it is necessary to know the patterns of electrical loads for each usage in detail. The electrical loads in an urban railway station have different characteristics from other normal electrical load, such as the peak load timing during a day. The lighting, HVAC, communication, and commercial loads make up large amount of electrical load for equipment in an urban railway station, and each of them has the unique specificity. These loads for each usage were estimated without measuring device by the polynomial regression method with big data such as total amount of electrical load and weather data. In the simulation with real data, the optimal polynomial regression model was third order polynomial regression model with 9 or 10 independent variables.

Big Data Analysis for Public Libraries Utilizing Big Data Platform: A Case Study of Daejeon Hanbat Library (도서관 빅데이터 플랫폼을 활용한 공공도서관 빅데이터 분석 연구: 대전한밭도서관을 중심으로)

  • On, Jeongmee;Park, Sung Hee
    • Journal of the Korean Society for information Management
    • /
    • v.37 no.3
    • /
    • pp.25-50
    • /
    • 2020
  • Since big data platform services for the public library began January 1, 2016, libraries have used big data to improve their work performance. This paper aims to examine the use cases of library big data and attempts to draw improvement plan to improve the effectiveness of library big data. For this purpose, first, we examine big data used while utilizing the library big data platform, the usage pattern of big data and services/policies drawn by big data analysis. Next, the limitations and advantages of the library big data platform are examined by comparing the data analysis of the integrated library management system (ILUS) currently used in public libraries and data analysis through the library big data platform. As a result of case analysis, big data usage patterns were found program planning and execution, collection, collection, and other types, and services/policies were summarized as customizing bookshelf themes for the book curation and reading promotion program, increasing collection utilization, and building a collection based on special topics. and disclosure of loan status data. As a result of the comparative analysis, ILUS is specialized in statistical analysis of library collection unit, and the big data platform enables selective and flexible analysis according to various attributes (age, gender, region, time of loan, etc.) reducing analysis time. Finally, the limitations revealed in case analysis and comparative analysis are summarized and suggestions for improvement are presented.

Implementation and Performance Aanalysis of Efficient Big Data Processing System Through Dynamic Configuration of Edge Server Computing and Storage Modules (BigCrawler: 엣지 서버 컴퓨팅·스토리지 모듈의 동적 구성을 통한 효율적인 빅데이터 처리 시스템 구현 및 성능 분석)

  • Kim, Yongyeon;Jeon, Jaeho;Kang, Sungjoo
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.6
    • /
    • pp.259-266
    • /
    • 2021
  • Edge Computing enables real-time big data processing by performing computing close to the physical location of the user or data source. However, in an edge computing environment, various situations that affect big data processing performance may occur depending on temporary service requirements or changes of physical resources in the field. In this paper, we proposed a BigCrawler system that dynamically configures the computing module and storage module according to the big data collection status and computing resource usage status in the edge computing environment. And the feature of big data processing workload according to the arrangement of computing module and storage module were analyzed.

Finding Industries for Big Data Usage on the Basis of AHP (AHP 기반의 빅데이터 활용을 위한 산업 탐색)

  • Lee, Sang-Won;Kim, Sung-Hyun
    • Journal of Digital Convergence
    • /
    • v.14 no.7
    • /
    • pp.21-27
    • /
    • 2016
  • Big Data is gathering all the attention from every business community. Pervasive use of machine-to-machine (M2M) applications and mobile devices bring an explosion of data. By analyzing this data, the private and public sectors can benefit in the areas of cost reduction and productivity. The Korean government is actively pursuing Big Data initiatives to promote its usage. This paper aims to select industries which fit for the development of Big Data with a verification of the experts. The analytic hierarchy process (AHP) is applied to systematically derive the opinion of more than 50 professionals. Medical / welfare, transportation / warehousing, information and communications / information security, energy, the financial sector have been identified as promising industries. The results can be utilized in developing Big Data best practices thus contributing industrial development.

A Study on the Influence of Expectation of Big Data Service on e-Commerce on the Use Intension (e-Commerce 상에서 빅데이터 서비스제공 기대가 이용의도에 미치는 영향 연구)

  • Kim, Young Kook;Yum, Su Whan;Kim, Jin Hyung;Bae, Suk Min;Jung, Jai Jin
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.9
    • /
    • pp.1132-1139
    • /
    • 2019
  • Big data is prominently used as a prediction method in achieving a goal, because it can analyze the regularities to predict future results from a vast amount of past data. Furthermore, big data has huge influence in very diverse academic fields. On such awareness, this study analyzed the regular effect of e-Commerce usefulness from the effects which expectations on big-data service affect the usage purpose of e-Commerce usefulness. This study categorized e-Commerce usefulness into quality recognition, service, and ease, and studied how each category works between the relationship of big-data service expectation and the use intention.