• 제목/요약/키워드: Big Data Usage

검색결과 174건 처리시간 0.025초

The Effect of Big Data-based Fashion Shopping Applications on App Users' Continuous Usage Intention

  • Hong, Hyekyung;Shin, Yeonseo;Lee, MiYoung
    • 패션비즈니스
    • /
    • 제22권6호
    • /
    • pp.83-93
    • /
    • 2018
  • The purpose of this research is to investigate the characteristics of big data-based fashion shopping (BDFS) application, perceived usefulness, and expectation confirmation that influence the continuous usage intention of BDFS application users based on the expectation-confirmation model. A survey was conducted with female consumers in their 20s, who are living in Seoul and Incheon area and have used BDFS applications, A total of 182 responses were used for the data analysis. Five hypotheses were proposed, and regression analyses were conducted to test those hypotheses. The results indicated that the users' perceived usefulness increased with the increase of accuracy and personalization characteristics of the app and the expectation confirmation. The result suggested that it is essential to provide accurate information for users to feel useful and to develop the personalized offerings and services which can be the biggest strength of the big-data based mobile fashion store. It was also found that continuous usage intention increases with increased perceived usefulness and expectation confirmation. This result suggests that expectations can play a critical role in perceiving the usefulness of BDFS applications and the user's expectation confirmation also significantly affected the users' continuous usage intention.

빅데이터 기반의 수요자원 관리 시스템 개발에 관한 연구 (A Study on Demand-Side Resource Management Based on Big Data System)

  • 윤재원;이인규;최중인
    • 전기학회논문지
    • /
    • 제63권8호
    • /
    • pp.1111-1115
    • /
    • 2014
  • With the increasing interest of a demand side management using a Smart Grid infrastructure, the demand resources and energy usage data management becomes an important factor in energy industry. In addition, with the help of Advanced Measuring Infrastructure(AMI), energy usage data becomes a Big Data System. Therefore, it becomes difficult to store and manage the demand resources big data using a traditional relational database management system. Furthermore, not many researches have been done to analyze the big energy data collected using AMI. In this paper, we are proposing a Hadoop based Big Data system to manage the demand resources energy data and we will also show how the demand side management systems can be used to improve energy efficiency.

하둡기반 빅데이터 시스템을 이용한 스마트그리드 전력데이터 분석 (Analyzing Smart Grid Energy Data using Hadoop Based Big Data System)

  • 조영탁;이원진;이인규;온병원;최중인
    • 전기학회논문지P
    • /
    • 제64권2호
    • /
    • pp.85-91
    • /
    • 2015
  • With the increasing popularity of Smart Grid infrastructure, it is much easier to collect energy usage data using AMI (Advanced Measuring Instrument) from residential housing, buildings and factories. Several researches have been done to improve an energy efficiency by analyzing the collected energy usage data. However, it is not easy to store and analyze the energy data using a traditional relational database management system since the data size grows exponentially with an increasing popularity of Smart grid infrastructure. In this paper, we are proposing a Hadoop based Big data system to store and analyze energy usage data. Based on our limited experiments, Hadoop based energy data analysis is three times faster than that of a relational database management system based approach with the current system.

빅데이터 시스템 도입을 위한 통합모형의 연구 : TOE, DOI, UTAUT를 기반으로 (A Study on an Integrative Model for Big Data System Adoption : Based on TOE, DOI and UTAUT)

  • 이선우;이희상
    • Journal of Information Technology Applications and Management
    • /
    • 제21권4_spc호
    • /
    • pp.463-483
    • /
    • 2014
  • Data are dramatically increased and big data technology is spotlighted innovative technology among the latest information technologies. Organizations are interested in adoption of big data system to analyze various data format and to identify new business opportunity. The purpose of this study is to build a unified model for a system adoption through analysis of impact that affects behavioral intention and usage behavior of using big data. This study in addition to Technology-Organization-Environment (TOE), that is used the introduction of organizational studies, and Diffusion of Innovation (DOI) have implemented an extended unified model including the unified theory of acceptance and use of technology (UTAUT) that is usually used in personal level adoption study. The hypothesis was set up after implementing research model, and then got 411 effective survey data to target the member of organizations. As a result, all models (UTAUT, TOE, DOI) are affect to behavioral intention and usage behavior. It is verified that the suggested unified model was appropriate.

전화통화 빅데이터 분석에 관한 연구 (A Study on Phon Call Big Data Analytics)

  • 김정래;정찬기
    • 정보화연구
    • /
    • 제10권3호
    • /
    • pp.387-397
    • /
    • 2013
  • 본 연구는 전화통화에 의해 생성된 데이터에 대한 빅데이터 분석 접근을 제안한다. 전화통화 데이터의 분석모형은 자연어의 어휘식별을 위한 PVPF(Parallel Variable-length Phrase Finding) 알고리즘과 키워드의 사용빈도 측정을 위한 워드 카운트 알고리즘으로 구성된다. 제안한 분석모형에서는 먼저 PVPF 알고리즘에 의해 연계 단어 추출을 통해 어휘를 식별하며, MapReduce의 워드 카운트 알고리즘을 사용하여 식별된 어휘 및 단어의 사용빈도를 측정한다. 그 결과는 다양한 관점에서 해석될 수 있다. 제안 분석모형의 효과성을 보이기 위해 HDFS(Hadoop Distributed File System)를 기반으로 분석모형을 설계 구현하였으며, 전화통화 데이터를 실험 적용한다. 실험결과, 키워드 상관관계 분석 및 사용빈도 변화 분석을 통해 유의미한 결과를 도출한다.

빅데이터분석을 통한 도시철도 역사부하 패턴 분석 (Analysis of Electrical Loads in the Urban Railway Station by Big Data Analysis)

  • 박종영
    • 전기학회논문지
    • /
    • 제67권3호
    • /
    • pp.460-466
    • /
    • 2018
  • For the efficient energy consumption in an urban railway station, it is necessary to know the patterns of electrical loads for each usage in detail. The electrical loads in an urban railway station have different characteristics from other normal electrical load, such as the peak load timing during a day. The lighting, HVAC, communication, and commercial loads make up large amount of electrical load for equipment in an urban railway station, and each of them has the unique specificity. These loads for each usage were estimated without measuring device by the polynomial regression method with big data such as total amount of electrical load and weather data. In the simulation with real data, the optimal polynomial regression model was third order polynomial regression model with 9 or 10 independent variables.

도서관 빅데이터 플랫폼을 활용한 공공도서관 빅데이터 분석 연구: 대전한밭도서관을 중심으로 (Big Data Analysis for Public Libraries Utilizing Big Data Platform: A Case Study of Daejeon Hanbat Library)

  • 온정미;박성희
    • 정보관리학회지
    • /
    • 제37권3호
    • /
    • pp.25-50
    • /
    • 2020
  • 2016년 1월 1일부터 공공도서관 빅데이터 플랫폼이 서비스되기 시작하여 도서관 빅데이터가 공공도서관 업무 개선에 활용되고 있다. 본 논문은 도서관 빅데이터 플랫폼 활용사례들을 살펴보고 도서관 빅데이터 플랫폼의 활용효과를 높일 수 있는 개선방안을 도출하고자 한다. 이를 위해 먼저, 도서관 빅데이터 플랫폼을 활용한 사례들에서 활용한 빅데이터와 활용유형분석 및 도출된 서비스/시행정책을 살펴본다. 다음으로, 현재 공공도서관에서 사용하는 통합도서관리시스템(ILUS)과 도서관 빅데이터 플랫폼 각각의 자료분석 방식을 비교함으로써 도서관 빅데이터 플랫폼의 한계점과 이점을 살펴본다. 사례분석 결과, 프로그램 기획 및 수행, 장서, 수서, 기타의 유형으로 빅데이터를 활용하였고 서비스/시행정책은 이용자 맞춤형 테마서가 및 독서진흥프로그램 진행, 장서활용도 증대, 특화주제에 기반한 수서 및 대출현황 데이터 공개로 요약되었다. 비교분석결과, ILUS는 자관의 자료실현황분석에 특화되어 있으며, 빅데이터 플랫폼은 다양한 속성(연령, 성별, 지역, 대출시기 등)에 따른 선택적 분석이 가능하여 분석시간단축과 유연한 분석이 가능하다. 마지막으로 사례분석과 비교분석에서 밝혀진 특징 및 한계점을 정리하고 개선방안을 제시한다.

BigCrawler: 엣지 서버 컴퓨팅·스토리지 모듈의 동적 구성을 통한 효율적인 빅데이터 처리 시스템 구현 및 성능 분석 (Implementation and Performance Aanalysis of Efficient Big Data Processing System Through Dynamic Configuration of Edge Server Computing and Storage Modules)

  • 김용연;전재호;강성주
    • 대한임베디드공학회논문지
    • /
    • 제16권6호
    • /
    • pp.259-266
    • /
    • 2021
  • Edge Computing enables real-time big data processing by performing computing close to the physical location of the user or data source. However, in an edge computing environment, various situations that affect big data processing performance may occur depending on temporary service requirements or changes of physical resources in the field. In this paper, we proposed a BigCrawler system that dynamically configures the computing module and storage module according to the big data collection status and computing resource usage status in the edge computing environment. And the feature of big data processing workload according to the arrangement of computing module and storage module were analyzed.

AHP 기반의 빅데이터 활용을 위한 산업 탐색 (Finding Industries for Big Data Usage on the Basis of AHP)

  • 이상원;김성현
    • 디지털융복합연구
    • /
    • 제14권7호
    • /
    • pp.21-27
    • /
    • 2016
  • 빅데이터가 다양한 산업 분야에서 모든 관심을 끌고 있다. 사물과 사물 간 연결과 모바일 장치들의 용도 확대는 데이터의 폭발적인 증가를 불러오고 있다. 이러한 데이터를 분석하여 민간과 공공 분야에서는 비용 절감과 생산성 분야에 있어서 혜택을 누리고 있다. 한국 정부는 이러한 활용을 촉진하기 위해서, 빅데이터 산업발전전략을 활발하게 추진하고 있다. 본 연구는 빅데이터의 적극적인 육성이 필요한 산업 분야를 전문가의 검증을 통해 선정하였다. 전문가의 50여명의 체계적인 의견 도출을 위해 계층분석법(AHP)을 적용하였다. 분석 결과 의료,복지, 운송/창고보관업, 정보통신/정보보안, 에너지, 금융 분야가 빅데이터 적용이 유망한 것으로 확인되었다. 도출 결과는 앞으로 빅데이터 시범사업으로 인한 모범사례의 발굴 등에 활용되어 빅데이터 산업 발전에 기여할 것이다.

e-Commerce 상에서 빅데이터 서비스제공 기대가 이용의도에 미치는 영향 연구 (A Study on the Influence of Expectation of Big Data Service on e-Commerce on the Use Intension)

  • 김영국;염수환;김진형;배석민;정재진
    • 한국멀티미디어학회논문지
    • /
    • 제22권9호
    • /
    • pp.1132-1139
    • /
    • 2019
  • Big data is prominently used as a prediction method in achieving a goal, because it can analyze the regularities to predict future results from a vast amount of past data. Furthermore, big data has huge influence in very diverse academic fields. On such awareness, this study analyzed the regular effect of e-Commerce usefulness from the effects which expectations on big-data service affect the usage purpose of e-Commerce usefulness. This study categorized e-Commerce usefulness into quality recognition, service, and ease, and studied how each category works between the relationship of big-data service expectation and the use intention.