• Title/Summary/Keyword: Bifidobacterium longum subsp. longum

Search Result 17, Processing Time 0.022 seconds

Functional Properties of Bifidobacterium longum and Their Incorporation into Cheese Making Process (비피도박테리움 롱검의 기능성과 치즈 제조에 활용)

  • Kim, Hyoun Wook;Jeong, Seok Geun;Ham, Jun-Sang
    • Journal of Dairy Science and Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.75-82
    • /
    • 2016
  • Members of the genus Bifidobacterium are prevalent in the human colon and represent up to 90% of all bacteria in fecal samples of breast-fed infants, and 3~5% of adult fecal microbiota. Bifidobacteria produce organic acids, thus reducing the colon pH to a level inhibitory for pathogenic bacteria. They can also detoxify a number of toxic compounds and adhere to the colon mucosa, thus preventing the adherence of pathogens and induction of colon cancer. Recently, we identified a novel Bifidobacterium longum subsp. longum strain, KACC 91563, in a fecal sample of a Korean neonate, and demonstrated its functional properties. We showed that B. longum KACC 91563 alleviates food allergy through mast cell suppression and produces antioxidative and antihypertensive peptides by casein hydrolysis. Dairy products are considered as an ideal food system for the delivery of probiotic cultures to the human gastrointestinal tract. Cheese affords protection to probiotic microbes during gastric transit due to its relatively high pH, more solid consistency, higher fat content, and higher buffering capacity. Incorporation of B. longum KACC 91563 into cheese making is currently under study.

Acid Response of Bifidobacterium longum subsp. longum BBMN68 Is Accompanied by Modification of the Cell Membrane Fatty Acid Composition

  • Liu, Songling;Ren, Fazheng;Jiang, Jingli;Zhao, Liang
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.7
    • /
    • pp.1190-1197
    • /
    • 2016
  • The acid response of Bifidobacterium longum subsp. longum BBMN68 has been studied in our previous study. The fab gene, which is supposed to be involved in membrane fatty acid biosynthesis, was demonstrated to be induced in acid response. In order to investigate the relationship between acid response and cell membrane fatty acid composition, the acid adaptation of BBMN68 was assessed and the membrane fatty acid composition at different adaptation conditions was identified. Indeed, the fatty acid composition was influenced by acid adaptation. Our results showed that the effective acid adaptations were accompanied with decrease in the unsaturated to saturated fatty acids ratio (UFA/SFA) and increase in cyclopropane fatty acid (CFA) content, which corresponded to previous studies. Moreover, both effective and non-effective acid adaptation conditions resulted in decrease in the C18:1 cis-9/C18:1 trans-9 ratio, indicating that the C18:1 cis-9/C18:1 trans-9 ratio is associated with acid tolerance response but not with acid adaptation response. Taken together, this study indicated that the UFA/SFA and CFA content of BBMN68 were involved in acid adaptation and the C18:1 cis-9/C18:1 trans-9 ratio was involved in acid tolerance response.

Isolation and Characterization of Bifidobacterium longum subsp. longum BCBR-583 for Probiotic Applications in Fermented Foods

  • Yi, Da Hye;Kim, You-Tae;Kim, Chul-Hong;Shin, Young-Sup;Lee, Ju-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.11
    • /
    • pp.1846-1849
    • /
    • 2018
  • Recent human gut microbiome studies have supported that the genus Bifidobacterium is one of the most beneficial bacteria for human intestinal health. To develop a new probiotic strain for functional food applications, fourteen fecal samples were collected from healthy Koreans and the strain BCBR-583 was newly selected and isolated from a 25-year-old Korean woman's fecal sample using the selective medium for Bifidobacterium. Subsequent fructose-6-phosphate phosphoketolase (F6PPK) test and 16S rRNA gene sequencing analysis of the strain BCBR-583 confirmed that it belongs to B. longum subsp. longum. The stress resistance tests showed that it has oxygen and heat tolerance activities (5- and 3.9-fold increase for 24 h at 60 and 120 rpm, respectively; $78.61{\pm}6.67%$ survival rate at $45^{\circ}C$ for 24 h). In addition, gut environment adaptation tests revealed that this strain may be well-adapted in the gut habitat, with gastric acid/bile salt resistance ($85.79{\pm}1.53%$, survival rate under 6 h treatments of gastric acid and bile salt) and mucin adhesion ($73.72{\pm}7.36%$). Furthermore, additional tests including cholesterol lowering assay showed that it can reduce $86.31{\pm}1.85%$ of cholesterol. Based on these results, B. longum BCBR-583 has various stress resistance for survival during food processing and environmental adaptation activities for dominant survival in the gut, suggesting that it could be a good candidate for fermented food applications as a new probiotic strain.

Effect of Probiotics Lactobacillus and Bifidobacterium on Gut-Derived Lipopolysaccharides and Inflammatory Cytokines: An In Vitro Study Using a Human Colonic Microbiota Model

  • Rodes, Laetitia;Khan, Afshan;Paul, Arghya;Coussa-Charley, Michael;Marinescu, Daniel;Tomaro-Duchesneau, Catherine;Shao, Wei;Kahouli, Imen;Prakash, Satya
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.4
    • /
    • pp.518-526
    • /
    • 2013
  • Gut-derived lipopolysaccharides (LPS) are critical to the development and progression of chronic low-grade inflammation and metabolic diseases. In this study, the effects of probiotics Lactobacillus and Bifidobacterium on gut-derived lipopolysaccharide and inflammatory cytokine concentrations were evaluated using a human colonic microbiota model. Lactobacillus reuteri, L. rhamnosus, L. plantarum, Bifidobacterium animalis, B. bifidum, B. longum, and B. longum subsp. infantis were identified from the literature for their anti-inflammatory potential. Each bacterial culture was administered daily to a human colonic microbiota model during 14 days. Colonic lipopolysaccharides, and Gram-positive and negative bacteria were quantified. RAW 264.7 macrophage cells were stimulated with supernatant from the human colonic microbiota model. Concentrations of TNF-${\alpha}$, IL-$1{\beta}$, and IL-4 cytokines were measured. Lipopolysaccharide concentrations were significantly reduced with the administration of B. bifidum ($-46.45{\pm}5.65%$), L. rhamnosus ($-30.40{\pm}5.08%$), B. longum ($-42.50{\pm}1.28%$), and B. longum subsp. infantis ($-68.85{\pm}5.32%$) (p < 0.05). Cell counts of Gram-negative and positive bacteria were distinctly affected by the probiotic administered. There was a probiotic strain-specific effect on immunomodulatory responses of RAW 264.7 macrophage cells. B. longum subsp. infantis demonstrated higher capacities to reduce TNF-${\alpha}$ concentrations ($-69.41{\pm}2.78%$; p < 0.05) and to increase IL-4 concentrations ($+16.50{\pm}0.59%$; p < 0.05). Colonic lipopolysaccharides were significantly correlated with TNF-${\alpha}$ and IL-$1{\beta}$ concentrations (p < 0.05). These findings suggest that specific probiotic bacteria, such as B. longum subsp. infantis, might decrease colonic lipopolysaccharide concentrations, which might reduce the proinflammatory tone. This study has noteworthy applications in the field of biotherapeutics for the prevention and/or treatment of inflammatory and metabolic diseases.

Production of ${\alpha}$- and ${\beta}$-Galactosidases from Bifidobacterium longum subsp. longum RD47

  • Han, Yoo Ri;Youn, So Youn;Ji, Geun Eog;Park, Myeong Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.5
    • /
    • pp.675-682
    • /
    • 2014
  • Approximately 50% of people in the world experience abdominal flatulence after the intake of foods containing galactosides such as lactose or soybean oligosaccharides. The galactoside hydrolyzing enzymes of ${\alpha}$- and ${\beta}$-galactosidases have been shown to reduce the levels of galactosides in both the food matrix and the human gastrointestinal tract. This study aimed to optimize the production of ${\alpha}$- and ${\beta}$-galactosidases of Bifidobacterium longum subsp. longum RD47 with a basal medium containing whey and corn steep liquor. The activities of both enzymes were determined after culturing at $37^{\circ}C$ at pH 6.0 for 30 h. The optimal production of ${\alpha}$- and ${\beta}$-galactosidases was obtained with soybean oligosaccharides as a carbon source and proteose peptone no. 3 as a nitrogen source. The optimum pH for both ${\alpha}$- and ${\beta}$-galactosidases was 6.0. The optimum temperatures were $35^{\circ}C$ for ${\alpha}$-galactosidase and $37^{\circ}C$ for ${\beta}$-galactosidase. They showed temperature stability up to $37^{\circ}C$. At a 1 mM concentration of metal ions, $CuSO_4$ inhibited the activities of ${\alpha}$- and ${\beta}$-galactosidases by 35% and 50%, respectively. On the basis of the results obtained in this study, B. longum RD47 may be used for the production of ${\alpha}$- and ${\beta}$-galactosidases, which may reduce the levels of flatulence factors.

Biodistribution of a Promising Probiotic, Bifidobacterium longum subsp. longum Strain BBMN68, in the Rat Gut

  • Lv, Yang;Qiao, Xuewei;Zhao, Liang;Ren, Fazheng
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.6
    • /
    • pp.863-871
    • /
    • 2015
  • Bifidobacterium longum subsp. longum BBMN68, isolated from centenarians in Guangxi, China, has been proved to be a promising probiotic strain for its health benefits. In this study, the biodistribution of this strain in the rat gut was first investigated using the quantitative realtime PCR assay and propidium monoazide. Strain-specific primers were originally designed based on the BBMN68 genome sequence. Healthy rats were orally inoculated with either a single dose of BBMN68 (1010 colony-forming units/kg), or with one dose per day for 7 days and bacterial concentrations were analyzed in detail from the intestinal contents and feces of four different gut locations, including stomach, small intestine, colon, and rectum. Results indicated that strain BBMN68 could overcome the rigors of passage through the upper gastrointestinal tract and transiently accumulate in the colon, even though survival in the stomach and small intestine was not high. A good level of BBMN8 could stay in vivo for 72 h following a 7-day oral administration, and a daily administration is suggested for a considerable and continuous population of BBMN68 to be maintained in the host intestine.

Antimicrobial Resistance of Seventy Lactic Acid Bacteria Isolated from Commercial Probiotics in Korea

  • Eunju Shin;Jennifer Jaemin Paek;Yeonhee Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.4
    • /
    • pp.500-510
    • /
    • 2023
  • In this study, lactic acid bacteria were isolated from 21 top-selling probiotic products on Korean market and their antimicrobial resistance were analyzed. A total 152 strains were claimed to be contained in these products and 70 isolates belonging to three genera (Bifidobacterium, Lactobacillus, and Lactococcus) were obtained from these products. RAPD-PCR showed diversity among isolates of the same species except for two isolates of Lacticaibacillus rhamnosus from two different products. The agar dilution method and the broth dilution method produced different MICs for several antimicrobials. With the agar dilution method, five isolates (three isolates of Bifidobacterium animalis subsp. lactis, one isolate of B. breve, one isolate of B. longum) were susceptible to all nine antimicrobials and 15 isolates were multi-drug resistant. With the broth microdilution method, only two isolates (one isolate of B. breve and one isolate of B. longum) were susceptible while 16 isolates were multi-drug resistant. In this study, only two AMR genes were detected: 1) lnu(A) in one isolate of clindamycin-susceptible and lincomycin-resistant Limosilactobacillus reuteri; and 2) tet(W) in one tetracycline-susceptible isolate of B. longum B1-1 and two tetracycline-susceptible isolates and three tetracycline resistant isolates of B. animalis subsp. lactis. Transfer of these two genes via conjugation with a filter mating technique was not observed. These results suggest a need to monitor antimicrobial resistance in newly registered probiotics as well as probiotics with a long history of use.

Development of Probiotic Candies with Optimal Viability by Using Response Surface Methodology and Sequential Quadratic Programming

  • Chen, Kun-Nan;Chen, Ming-Ju;Shiu, Jia-Shian
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.6
    • /
    • pp.896-902
    • /
    • 2008
  • The objective of this research was to create a new probiotic candy with good flavor and healthy benefits by using the response surface method and a sequential quadratic programming technique. The endpoint was to increase the varieties of dairy products and enhance their market values. In this study, milk was mixed with yogurt cultures (Lactobacillus bulgaricus, Streptococcus thermophilus) and probiotics (L. paracasei, Bifidobacterium longum) and incubated at $37^{\circ}C$ for 20 h. The samples were blended with lyoprotectants (galactose, skim milk powder and sucrose), freeze dried and then mixed with sweeteners (lactose and xylitol) to improve the texture for forming tablets. The processing conditions were optimized in two steps: the first step constructed a surface model using response surface methodology; the second step optimized the model with a sequential quadratic programming procedure. Results indicated that skim milk inoculated with L. delbrueckii subsp. Bulgaricus, S. thermophilus, L. paracasei subsp. paracasei and B. longum and blended with 6.9% of galactose, 7.0% of sucrose and 8.0% of skim milk powder would produce a new probiotic candy with the highest viability of probiotics and good flavor. A relatively higher survival of probiotics can be achieved by placing the probiotic candy product in a glass bottle with deoxidant and desiccant at $4^{\circ}C$. These probiotic counts remained at 106-108 CFU/g after being stored for two months.

Growth-Promoting Effects of Vegetable Extracts on Selected Human Lactic Acid Bacteria

  • Kim, Moo-Key;Kim, Byung-Su;Baek, Bong-Rea;Shin, Dong-Hwa;Lee, Hoi-Seon
    • Preventive Nutrition and Food Science
    • /
    • v.6 no.3
    • /
    • pp.192-196
    • /
    • 2001
  • Ethanol extracts from 36 vegetable samples were assayed for their growth-promoting effects on Bifidobacterium bifidum, B. longum, and Lactobacillus casei The growth-promoting effects varied according to bacterial strain and vegetable species. In modified Gy rgy broth, extracts of Lactuca sativa, Lycopersicon esculentum and L escutentum var. cerasiforme exhibited strong growth-promoting responses toward B. longum, and significant and strong growth- promoting response toward B. bifidum was observed in extracts of Actinidia arguta, Allium cepa, A. sativum, Brassica campestris subsp. napus vats. pekinensis, Capsicum frutescens, Daucus carota var. sativa, L sativa, 1. esculentum and L. esculentum var. cerasforme, Nelumbo nucifera, Cucurbita moschata, Lackca sativa var. capitata, and Rubus coreanus. For L casei, extracts of A. fshlosum, A. hberosum, Cichorium intbus, Cucurbita moschat\ulcorner Ipomoea batatas, 1. sativa var. capitata, L. esculentum, P. brachycarpa, Raphanus sativus, R. coreanus, and S. melongena strongly enhanced the growth of this bacteria. In modified Gy rgy broth, the promoting effect was most pronounced with B. bifidum and L. casei among lactic acid bacteria used. In MRS broth, A. arguta, A. cepa, A. sativum, B. campestris subsp. napus var. pekinensis, C. frutescens, and D. carota var. sativa L. satiw var. capitata, and R. coreanus strongly enhanced the growth of B. bifidum, Growth of B. longum was strongly affected by the addition of extracts from L. sativa var. capitata. For L casei, moderate growth-promoting responses were observed in 9 vegetable extracts. The promoting effect in MRS broth was most pronounced with B. bifidum among lactic acid bacteria used.

  • PDF

A Novel Lactobacillus casei LP1 Producing 1,4-Dihydroxy-2-Naphthoic Acid, a Bifidogenic Growth Stimulator

  • Kang, Jo-Eun;Kim, Tae-Jung;Moon, Gi-Seong
    • Preventive Nutrition and Food Science
    • /
    • v.20 no.1
    • /
    • pp.78-81
    • /
    • 2015
  • 1,4-Dihydroxy-2-naphthoic acid (DHNA) is a bifidogenic growth stimulator (BGS) and could be a functional food ingredient since bifidobacteria are beneficial for human health. For that reason, lactic acid bacteria producing DHNA have been screened. A lactic acid bacterium LP1 strain isolated from a natural cheese was confirmed to produce DHNA, analyzed by a HPLC method. The strain was identified as Lactobacillus casei by 16S rRNA gene sequence analysis. The cell-free supernatant of fermented whey produced by L. casei LP1 presented the BGS activity for three bifidobacterial strains such as Bifidobacterium longum subsp. infantis KCTC 3127, Bifidobacterium bifidum KCTC 3202, and Bifidobacterium breve KCTC 3220 which were human-originated. To the best of our knowledge, a L. casei strain which can produce DHNA was firstly identified in this study.