비피도박테리움 롱검의 기능성과 치즈 제조에 활용

Functional Properties of Bifidobacterium longum and Their Incorporation into Cheese Making Process

  • 김현욱 (농촌진흥청 국립축산과학원) ;
  • 정석근 (농촌진흥청 국립축산과학원) ;
  • 함준상 (농촌진흥청 국립축산과학원)
  • 투고 : 2016.05.08
  • 심사 : 2016.06.02
  • 발행 : 2016.06.30

초록

Members of the genus Bifidobacterium are prevalent in the human colon and represent up to 90% of all bacteria in fecal samples of breast-fed infants, and 3~5% of adult fecal microbiota. Bifidobacteria produce organic acids, thus reducing the colon pH to a level inhibitory for pathogenic bacteria. They can also detoxify a number of toxic compounds and adhere to the colon mucosa, thus preventing the adherence of pathogens and induction of colon cancer. Recently, we identified a novel Bifidobacterium longum subsp. longum strain, KACC 91563, in a fecal sample of a Korean neonate, and demonstrated its functional properties. We showed that B. longum KACC 91563 alleviates food allergy through mast cell suppression and produces antioxidative and antihypertensive peptides by casein hydrolysis. Dairy products are considered as an ideal food system for the delivery of probiotic cultures to the human gastrointestinal tract. Cheese affords protection to probiotic microbes during gastric transit due to its relatively high pH, more solid consistency, higher fat content, and higher buffering capacity. Incorporation of B. longum KACC 91563 into cheese making is currently under study.

키워드

참고문헌

  1. Agerholm-Larsen, L., Raben, A., Haulrik, N., Hansen, A. S., Manders, M. and Astrup, A. 2000. Effect of 8 weeks intake of probiotic milk products on risk factors for cardiovascular diseases. Eur. J. Clin. Nutr. 54:288-297. https://doi.org/10.1038/sj.ejcn.1600937
  2. Balleste, E. and Blanch, A. R. 2011. Bifidobacterial diversity and the development of new microbial source tracking indicators. Appl. Environ. Microbiol. 77:3518-3525. https://doi.org/10.1128/AEM.02198-10
  3. Ballongue, J., 1998. Bifidobacteria and probiotic action. In: Salminen, S., von Wright, A. (Eds.), Lactic acid bacteria-microbiology and functional aspects. Marcel Dekker, New York, pp. 519-587.
  4. Beckman, K. B. and Ames, B. N. 1998. The free radical theory of aging matures. Physiol. Rev. 78:547-581. https://doi.org/10.1152/physrev.1998.78.2.547
  5. Berni Canani, R., Nocerino, R., Terrin, G., Coruzzo, A., Cosenza, L., Leone, L. and Troncone, R. 2012. Effect of Lactobacillus GG on tolerance acquisition in infants with cow's milk allergy: A randomized trial. J. Allergy Clin. Immunol. 129:580-582, e1-5. https://doi.org/10.1016/j.jaci.2011.10.004
  6. Blanchette, L., Roy, D. and Gauthier, S. F. 1995. Production of cultured cottage cheese dressing by bifidobacteria. J. Dairy Sci. 78:1421-1429. https://doi.org/10.3168/jds.S0022-0302(95)76764-9
  7. Boylston, T. D., Vinderola, C. G., Ghoddusi, H. B. and Reinheimer, J. A. 2004. Incorporation of bifidobacteria into cheeses: Challenges and rewards. Int. Dairy J. 14:375-387. https://doi.org/10.1016/j.idairyj.2003.08.008
  8. Branum, A. M. and Lukacs, S. L. 2009. Food allergy among children in the United States. Pediatrics 124:1549- 1555. https://doi.org/10.1542/peds.2009-1210
  9. Chang, O. K., Perrin, C., Galia, W., Saulnier, F., Miclo, L., Roux, E., Driou, A., Humbert, G. and Dary, A. 2012. Release of the cellenvelope protease PrtS in the growth medium of Streptococcus thermophilus 4F44. Int. Dairy J. 23:91-98. https://doi.org/10.1016/j.idairyj.2011.10.014
  10. Chang, O. K., Seol, K.-H., Jeong, S.-G, Oh, M.-H., Park, B.-Y, Perrin, C. and Ham, J. S. 2013. Casein hydrolysis by Bifidobacterium longum KACC 91563 and antioxidant activities of peptides derived therefrom. J. Dairy Sci. 96:5544-5555. https://doi.org/10.3168/jds.2013-6687
  11. Corbo, M. R., Albenzio, M., De Angelis, M., Sevi, A. and Gobbetti, M. 2001. Microbiological and biochemical properties of Canestrato Pugliese hard cheese supplemented with bifidobacteria. J. Dairy Sci. 84:551-561. https://doi.org/10.3168/jds.S0022-0302(01)74507-9
  12. Dinakar, P. and Mistry, V. V. 1994. Growth and viability of Bifidobacterium bifidum in Cheddar cheese. J. Dairy Sci. 77:2854-2864. https://doi.org/10.3168/jds.S0022-0302(94)77225-8
  13. Donkor, O. N., Henriksson, A., Singh, T. K., Vasiljevic, T. and Shah, N. P. 2007 ACE-inhibitory activity of probiotic yoghurt. Int. Dairy J. 17:1321-1331. https://doi.org/10.1016/j.idairyj.2007.02.009
  14. Favier, C. F., de Vos, W. M. and Akkermans, A. D. L. 2003. Development of bacterial and bifidobacterial communities in feces of newborn babies. Anaerobe. 9:219-229. https://doi.org/10.1016/j.anaerobe.2003.07.001
  15. Favier, C. F., Vaughan, E. E., De Vos, W. M. and Akkermans, A. D. L. 2002. Molecular monitoring of succession of bacterial communities in human neonates. Appl. Environ. Microbiol. 68:219-226. https://doi.org/10.1128/AEM.68.1.219-226.2002
  16. Gallaher, D. G. and Khil, J., 1999. The effect of synbiotics on colon carcinogenesis in rats. J. Nutr. 129:1483S-1487S. https://doi.org/10.1093/jn/129.7.1483S
  17. Gobbetti, M., Ferranti, P., Smacchi, E., Goffredi, F. and Addeo, F. 2000. Production of angiotensin-I-converting-enzyme-inhibitory peptides in fermented milks started by Lactobacillus delbrueckii subsp. bulgaricus SS1 and Lactococcus lactis subsp. cremoris FT4. Appl. Environ. Microbiol. 66:3898- 3904. https://doi.org/10.1128/AEM.66.9.3898-3904.2000
  18. Gobbetti, M., Stepaniak, L., De Angelis, M., Corsetti, A. and Di Cagno, R. 2002. Latent bioactive peptides in milk proteins: Proteolytic activation and significance in dairy processing. Crit. Rev. Food Sci. Nutr. 42:223-239. https://doi.org/10.1080/10408690290825538
  19. Gomes, A. M. P. and Malcata, F. X. 1999. Bifidobacterium spp. and Lactobacillus acidophilus: Biological, biochemical, technological and therapeutical properties relevant for use as probiotics. Trends Food Sci. Technol. 10:139-157. https://doi.org/10.1016/S0924-2244(99)00033-3
  20. Gomes, A. M. P., Malcata, F. X., Claver, F. A. M. and Grande, H. G. 1995. Incorporation of Bifidobacterium sp. strain Bo and Lactobacillus acidophilus strain Ki in a cheese product. Neth. Milk Dairy J. 49:71-95.
  21. Gomez-Ruiz, J. A., Ramos, M. and Recio, I. 2002. Angiotensinconverting enzyme-inhibitory peptides in Manchego cheeses manufactured with different starter cultures. Int. Dairy J. 12:697-706. https://doi.org/10.1016/S0958-6946(02)00059-6
  22. Gonzalez-Gonzalez, C., Gibson, R. and Jauregi, P. 2013. Novel probiotic-fermented milk with angiotensin I-converting enzyme inhibitory peptides produced by Bifidobacterium bifidum MF 20/5. Int. J. Food Microbiol. 167:131-137. https://doi.org/10.1016/j.ijfoodmicro.2013.09.002
  23. Gursoy, O. and Kinik, O. 2010. Incorporation of adjunct cultures of Enterococcus faecium, Lactobacillus paracasei subsp. paracasei and Bifidobacterium bifidum into white cheese. J. Food Agric. Environ. 8:107-112.
  24. Gursoy, O., Gokce, R., Con, A. H. and Kinik, O. 2014. Survival of Bifidobacterium longum and its effect on physicochemical properties and sensorial attributes of white brined cheese. Int. J. Food Sci and Nutr. 65(7):816-820. https://doi.org/10.3109/09637486.2014.934209
  25. Ha, G. E., Chang, O. K., Jo, S. M., Han, G. S., Park, B. Y., Ham, J. S. and Jeong, S. G. 2015. Identification of antihypertensive peptides derived from low molecular weight casein hydrolysates generated during fermentation by Bifidobacterium longum KACC 91563. Korean J. Food Sci. An. 35(6):738-747. https://doi.org/10.5851/kosfa.2015.35.6.738
  26. Ham, J. S., Lee, T., Byun, M. J., Lee, K. T., Kim, M. K., Han, G. S., Jeong, S. K., Oh, M. H., Kim, D. H. and Kim, H. 2011. Complete genome sequence of Bifidobacterium longum subsp. longum KACC 91563. J. Bacteriol. 193(18): 5044. https://doi.org/10.1128/JB.05620-11
  27. Harmsen, H. J. M., Raangs, G. C., He, T., Degener, J. E. and Welling, G. W. 2002. Extensive set of 16S rRNAbased probes for detection of bacteria in human feces. Appl. Environ. Microbiol. 68:2982-2990. https://doi.org/10.1128/AEM.68.6.2982-2990.2002
  28. Harmsen, H. J. M., Wildeboer-Veloo, A. C., Raangs, G. C., Wagendorp, A. A., Klijn, N., Bindels, J. G. and Welling, G. W. 2000. Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J. Pediatr. Gastroenterol. Nutrition 30:61-67. https://doi.org/10.1097/00005176-200001000-00019
  29. Hartemink, R., Kok, B. J., Weenk, G. H. and Rombouts, F. M. 1996. Raffinose-Bifidobacterium (RB) agar, a new selective medium for bifidobacteria. J. Microbiol. Methods 27:33-43. https://doi.org/10.1016/0167-7012(96)00926-8
  30. Hayes, M., Ross, R. P., Fitzgerald, G. F. and Stanton, C. 2007. Putting microbes to work: Dairy fermentation, cell factories and bioactive peptides. Part II: Bioactive peptide functions. Biotechnol. J. 2:435-449. https://doi.org/10.1002/biot.200700045
  31. Islam, M. A., Alam, M. K., Islam, M. N., Khan, M. A. S., Ekeberg, D., Rukke, E. O. and Vegarud, G. E. 2014. Principal milk components in Buffalo, Holstein Cross, Indigenous cattle and Red Chittagong cattle from Bangladesh. Asian-Aust. J. Anim. Sci. 27:886-897. https://doi.org/10.5713/ajas.2013.13586
  32. Jao, C. L., Huang, S. L. and Hsu, K. C. 2012. Angiotensin converting enzyme inhibitory peptides: Inhibition mode, bioavailability, and antihypertensive effects. Biomedicine 2: 130-136. https://doi.org/10.1016/j.biomed.2012.06.005
  33. Kailasapathy, K. and Masondole, L. 2005. Survival of free and microencapsulated Lactobacillus acidophilus and Bifidobacterium lactis and their effect on texture of Feta cheese. Aust. J. Dairy Technol. 60:252-258.
  34. Kim, J. H., Jeun, E. J., Hong, C. P., Kim, S. H., Jang, M. S., Lee, E. J., Moon, S. J., Yun, C. H., Im, S. H., Jeong, S. G., Park, B. Y., Kim, K. T., Seoh, J. Y., Kim, Y. K., Oh, S. J., Ham, J. S., Yang, B. G. and Jang M. H. 2016. Extracellular vesicle-derived protein from Bifidobacterium longum alleviates food allergy through mast cell suppression. J. Allergy Clin. Immunol. 137:507-516. https://doi.org/10.1016/j.jaci.2015.08.016
  35. Mahmoudi, M, Asl, A. K. and Zomorodi, S. 2012. The influence of probiotic bacteria on the properties of Iranian white cheese. Int. J. Dairy Technol. 65:561-567. https://doi.org/10.1111/j.1471-0307.2012.00854.x
  36. Mattarelli, P., Bonaparte, C., Pot, B. and Biavati, B. 2008. Proposal to reclassify the three biotypes of Bifidobacterium longum as three subspecies: Bifidobacterium longum subsp. longum subsp. nov., Bifidobacterium longum subsp. infantis comb. nov. and Bifidobacterium longum subsp. suis comb. nov. Int. J. Syst. Evol. Microbiol. 58(4):767-72. https://doi.org/10.1099/ijs.0.65319-0
  37. Mc Brearty, S., Ross, R. P., Fitzgerald, G. F., Collins, J. K., Wallace, J. M. and Stanton, C. . 2001. Influence of two commercially available bifidobacteria cultures on Cheddar cheese quality. Int. Dairy J. 11:599-610. https://doi.org/10.1016/S0958-6946(01)00089-9
  38. Miclo, L., Roux, E., Genay, M., Brusseaux, E., Poirson, C., Jameh, N., Perrin, C. and Dary, A. 2012. Variability of hydrolysis of ${\beta}$-, ${\alpha}$s1-, and ${\alpha}$s2-caseins by 10 strains of Streptococcus thermophilus and resulting bioactive peptides. J. Agric. Food Chem. 60:554-565. https://doi.org/10.1021/jf202176d
  39. Miguel, M., Contreras, M. M., Recio, I. and Aleixandre, A. 2009. ACE-inhibitory and antihypertensive properties of a bovine casein hydrolysate. Food Chem. 112:211-214. https://doi.org/10.1016/j.foodchem.2008.05.041
  40. Mirzaei, H., Pourjafar, H. and Homayouni, A. 2012. Effect of calcium alginate and resistant starch microencapsulation on the survival rate of Lactobacillus acidophilus La5 and sensory properties in Iranian white brined cheese. Food Chem. 132:1966-1970. https://doi.org/10.1016/j.foodchem.2011.12.033
  41. Ozer, B., Kirmaci, H. A., Senel, E., Atamer, M. and Hayaloglu, A. 2009. Improving the viability of Bifidobacterium bifidum BB-12 and Lactobacillus acidophilus LA-5 in white-brined cheese by microencapsulation. Int. Dairy J. 19:22-29. https://doi.org/10.1016/j.idairyj.2008.07.001
  42. Petrillo, E. W. and Ondetti, M. A. 1982. Angiotensin-converting enzyme inhibitors: Medicinal chemistry and biological actions. Med. Res. Rev. 2:1-41. https://doi.org/10.1002/med.2610020103
  43. Rezzonico, E., Lariani, S., Barretto, C., Cuanoud, G., Gilberti, G., Delley, M., Arigoni, F. and Pessi., G. 2007. Global transcriptome analysis of the heat shock response of Bifidobacterium longum. FEMS Microbiol. Lett. 271:136-145. https://doi.org/10.1111/j.1574-6968.2007.00704.x
  44. Ross, R. P., Fitzgerald, G., Collins, K. and Stanton, C. 2002. Cheese delivering biocultures-probiotic cheese. Aust. J. Dairy Technol. 57:71-78.
  45. Roy, D. 2005. Technological aspects related to the use of bifidobacteria in dairy products. Lait. 85:39-56. https://doi.org/10.1051/lait:2004026
  46. Sadat-Mekmene, L., Jardin, L., Corre, C., Molle, D., Richoux, R., Delage, M. M., Lortal, S. and Gagnaire, V. 2011. Simultaneous presence of PrtH and PrtH2 proteinases in Lactobacillus helveticus strains improves breakdown of the pure ${\alpha}$s1-casein. Appl. Environ. Microbiol. 77:179-186. https://doi.org/10.1128/AEM.01466-10
  47. Sakata, S., Kitahara, M., Sakamoto, M., Hayashi, H., Fukuyama, M. and Benno, Y. 2002. Unification of Bifidobacterium infantis and Bifidobacterium suis as Bifidobacterium longum. Int. J. Syst. Evol. Microbiol. 52(6):1945-1951. https://doi.org/10.1099/00207713-52-6-1945
  48. Sampson, H. A. 1999. Food allergy. Part 2: Diagnosis and management. J. Allergy Clin. Immunol. 103:981-989. https://doi.org/10.1016/S0091-6749(99)70167-3
  49. Schiavi, E., Barletta, B., Butteroni, C., Corinti, S., Boirivant, M. and Di Felice, G. 2011. Oral therapeutic administration of a probiotic mixture suppresses established $Th_2$ responses and systemic anaphylaxis in a murine model of food allergy. Allergy 66:499-508. https://doi.org/10.1111/j.1398-9995.2010.02501.x
  50. Sicherer, S. H. and Sampson, H. A. 2009. Food allergy: recent advances in pathophysiology and treatment. Annu. Rev. Med. 60:261-277. https://doi.org/10.1146/annurev.med.60.042407.205711
  51. Stanton, C., Gardiner, G., Lynch, P. B., Collins, J. K., Fitzgerald, G. and Ross, R. P. 1998. Probiotic cheese. Int. Dairy J. 8:491-496. https://doi.org/10.1016/S0958-6946(98)00080-6
  52. Van den Tempel, T., Gundersen, J. K. and Nielsen, M. S. 2002. The microdistribution of oxygen in Danablu cheese measured by a microsensor during ripening. Int. J. Food Microbiol. 75:157-161. https://doi.org/10.1016/S0168-1605(01)00728-0
  53. Van Laere, K. M. J., Hartemink, R., Beldman, G., Pitson, S., Dijkema, C., Schols, H. A. and Voragen, A. G. J., 1999. Transglycosidase activity of Bifidobacterium adolescentis DSM 20083 -galactosidase. Appl. Microbiol. Biotechnol. 52:681-688. https://doi.org/10.1007/s002530051579
  54. Wolff, S. P., Jiang, Z. Y. and Hunt, J. V. 1991. Protein glycation and oxidative stress in diabetes mellitus and ageing. Free Radic. Biol. Med. 10:339-352. https://doi.org/10.1016/0891-5849(91)90040-A
  55. Yamamoto, N., Akino, A. and Takano, T. 1994. Antihypertensive effect of peptides derived from casein by an extracellular proteinase from Lactobacillus helveticus CP790. J. Dairy Sci. 77:917-922. https://doi.org/10.3168/jds.S0022-0302(94)77026-0
  56. Yilmaztekin, M, Ozer, B. H. and Atasoy, A. F. 2004. Survival of Lactobacillus acidophilus LA-5 and Bifidobacterium bifidum BB-02 in white-brined cheese. Int. J. Food Sci. Nut. 55:53-60. https://doi.org/10.1080/09637480310001642484