• Title/Summary/Keyword: Bidirectional Associative Memory

Search Result 11, Processing Time 0.021 seconds

Granular Bidirectional and Multidirectional Associative Memories: Towards a Collaborative Buildup of Granular Mappings

  • Pedrycz, Witold
    • Journal of Information Processing Systems
    • /
    • v.13 no.3
    • /
    • pp.435-447
    • /
    • 2017
  • Associative and bidirectional associative memories are examples of associative structures studied intensively in the literature. The underlying idea is to realize associative mapping so that the recall processes (one-directional and bidirectional ones) are realized with minimal recall errors. Associative and fuzzy associative memories have been studied in numerous areas yielding efficient applications for image recall and enhancements and fuzzy controllers, which can be regarded as one-directional associative memories. In this study, we revisit and augment the concept of associative memories by offering some new design insights where the corresponding mappings are realized on the basis of a related collection of landmarks (prototypes) over which an associative mapping becomes spanned. In light of the bidirectional character of mappings, we have developed an augmentation of the existing fuzzy clustering (fuzzy c-means, FCM) in the form of a so-called collaborative fuzzy clustering. Here, an interaction in the formation of prototypes is optimized so that the bidirectional recall errors can be minimized. Furthermore, we generalized the mapping into its granular version in which numeric prototypes that are formed through the clustering process are made granular so that the quality of the recall can be quantified. We propose several scenarios in which the allocation of information granularity is aimed at the optimization of the characteristics of recalled results (information granules) that are quantified in terms of coverage and specificity. We also introduce various architectural augmentations of the associative structures.

A New Design Method for the GBAM (General Bidirectional Associative Memory) Model (GBAM 모델을 위한 새로운 설계방법)

  • 박주영;임채환;김혜연
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.4
    • /
    • pp.340-346
    • /
    • 2001
  • This paper proposes a new design method for the GBAM: (general bidirectional associative memory) model. Based on theoretical investigations on the GBAM: model, it is shown that the design of the GBAM:-based bidirectional associative memeories can be formulated as optimization problems called GEVPs (generalized eigenvalue problems). Since the GEVPs arising in the procedure can be efficiently solved within a given tolerance by the recently developed interior point methods, the design procedure established in this paper is very useful in practice. The applicability of the proposed design procedure is demonstrated by simple design examples considered in related studies.

  • PDF

Modified Multi-layer Bidirectional Associative Memory with High Performance (성능이 향상된 수정된 다층구조 영방향연상기억메모리)

  • 정동규;이수영
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.6
    • /
    • pp.93-99
    • /
    • 1993
  • In previous paper we proposed a multi-layer bidirectional associative memory (MBAM) which is an extended model of the bidirectional associative memory (BAM) into a multilayer architecture. And we showed that the MBAM has the possibility to have binary storage for easy implementation. In this paper we present a MOdified MBAM(MOMBAM) with high performance compared to MBAM and multi-layer perceptron. The contents will include the architecture, the learning method, the computer simulation results for MOMBAM with MBAM and multi-layer perceptron, and the convergence properties shown by computer simulation examples.. And we will show that the proposed model can be used as classifier with a little restriction.

  • PDF

Implementation of Bidirectional Associative Memories Using the GBAM Model with Bias Terms (바이어스항이 있는 GBAM 모델을 이용한 양방향 연상메모리 구현)

  • 임채환;박주영
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.05a
    • /
    • pp.69-72
    • /
    • 2001
  • In this paper, we propose a new design method for bidirectional associative memories model with high error correction ratio. We extend the conventional GBAM model using bias terms and formulate a design procedure in the form of a constrained optimization problem. The constrained optimization problem is then transformed into a GEVP(generalized eigenvalue problem), which can be efficiently solved by recently developed interior point methods. The effectiveness of the proposed approach is illustrated by a example.

  • PDF

Generalized Asymmetrical Bidirectional Associative Memory for Human Skill Transfer

  • T.D. Eom;Lee, J. J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.482-482
    • /
    • 2000
  • The essential requirements of neural network for human skill transfer are fast convergence, high storage capacity, and strong noise immunity. Bidirectional associative memory(BAM) suffering from low storage capacity and abundance of spurious memories is rarely used for skill transfer application though it has fast and wide association characteristics for visual data. This paper suggests generalization of classical BAM structure and new learning algorithm which uses supervised learning to guarantee perfect recall starting with correlation matrix. The generalization is validated to accelerate convergence speed, to increase storage capacity, to lessen spurious memories, to enhance noise immunity, and to enable multiple association using simulation work.

  • PDF

A Multi-layer Bidirectional Associative Neural Network with Improved Robust Capability for Hardware Implementation (성능개선과 하드웨어구현을 위한 다층구조 양방향연상기억 신경회로망 모델)

  • 정동규;이수영
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.9
    • /
    • pp.159-165
    • /
    • 1994
  • In this paper, we propose a multi-layer associative neural network structure suitable for hardware implementaion with the function of performance refinement and improved robutst capability. Unlike other methods which reduce network complexity by putting restrictions on synaptic weithts, we are imposing a requirement of hidden layer neurons for the function. The proposed network has synaptic weights obtainted by Hebbian rule between adjacent layer's memory patterns such as Kosko's BAM. This network can be extended to arbitary multi-layer network trainable with Genetic algorithm for getting hidden layer memory patterns starting with initial random binary patterns. Learning is done to minimize newly defined network error. The newly defined error is composed of the errors at input, hidden, and output layers. After learning, we have bidirectional recall process for performance improvement of the network with one-shot recall. Experimental results carried out on pattern recognition problems demonstrate its performace according to the parameter which represets relative significance of the hidden layer error over the sum of input and output layer errors, show that the proposed model has much better performance than that of Kosko's bidirectional associative memory (BAM), and show the performance increment due to the bidirectionality in recall process.

  • PDF

Implementation of Real Time Optical Associative Memory using LCTV (LCTV를 이용한 실시간 광 연상 메모리의 구현)

  • 정승우
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1990.02a
    • /
    • pp.102-111
    • /
    • 1990
  • In this thesis, an optical bidirectional inner-product associative memory model using liquid crystal television is proposed and analyzed theoretically and realized experimentally. The LCTV is used as a SLM(spatial light modulator), which is more practical than conventional SLMs, to produce image vector in terms of computer and CCD camera. Memory and input vectors are recorded into each LCTV through the video input connectors of it by using the image board. Two multi-focus hololenses are constructed in order to perform optical inner-product process. In forward process, the analog values of inner-products are measured by photodetectors and are converted to digital values which are enable to control the weighting values of the stored vectors by changing the gray levels of the pixels of the LCTV. In backward process, changed stored vectors are used to produce output image vector which is used again for input vector after thresholding. After some iterations, one of the stored vectors is retrieved which is most similar to input vector in other words, has the nearest hamming distance. The experimental results show that the proposed inner-product associative memory model can be realized optically and coincide well with the computer simulation.

  • PDF

Design of BAM using an Optimization approach (최적화기법을 이용한 BAM의 설계)

  • 권철희
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.2
    • /
    • pp.161-167
    • /
    • 2000
  • In this paper, we propose a design method for BAMs(bidirectiona1 associative memories) which can perform the function of bidirectional association efficiently. Based on the theoretical investigation about the properties of BAMs, we first formulate the problem of finding a BAM that can store the given pattern pairs as stable states with high error correction ratio in the form of a constrained optimization problem. Next, we transform the constrained optimization problem into a GEVP(genera1ized eigenvalue problem), which can be solved by recently developed interior point methods. The applicability of the proposed method is illustrated via design examples.

  • PDF

NEW CONDITIONS ON EXISTENCE AND GLOBAL ASYMPTOTIC STABILITY OF PERIODIC SOLUTIONS FOR BAM NEURAL NETWORKS WITH TIME-VARYING DELAYS

  • Zhang, Zhengqiu;Zhou, Zheng
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.2
    • /
    • pp.223-240
    • /
    • 2011
  • In this paper, the problem on periodic solutions of the bidirectional associative memory neural networks with both periodic coefficients and periodic time-varying delays is discussed. By using degree theory, inequality technique and Lyapunov functional, we establish the existence, uniqueness, and global asymptotic stability of a periodic solution. The obtained results of stability are less restrictive than previously known criteria, and the hypotheses for the boundedness and monotonicity on the activation functions are removed.

A Study on CBAM model (CBAM 모델에 관한 연구)

  • 임용순;이근영
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.5
    • /
    • pp.134-140
    • /
    • 1994
  • In this paper, an algorithm of CBAM(Combination Bidirectional Associative Memory) model proposes, analyzes and tests CBAM model `s performancess by simulating with recalls and recognitions of patterns. In learning-procedure each correlation matrix of training patterns is obtained. As each correlation matrix's some elements correspond to juxtaposition, all correlation matrices are merged into one matrix (Combination Correlation Matrix, CCM). In recall-procedure, CCM is decomposed into a number of correlation matrices by spiliting its elements into the number of elements corresponding to all training patterns. Recalled patterns are obtained by multiplying input pattern with all correlation matrices and selecting a pattern which has the smallest value of energy function. By using a CBAM model, we have some advantages. First, all pattern having less than 20% of noise can be recalled. Second, memory capacity of CBAM model, can be further increased to include English alphabets or patterns. Third, learning time of CBAM model can be reduced greatly because of operation to make CCM.

  • PDF