Associative and bidirectional associative memories are examples of associative structures studied intensively in the literature. The underlying idea is to realize associative mapping so that the recall processes (one-directional and bidirectional ones) are realized with minimal recall errors. Associative and fuzzy associative memories have been studied in numerous areas yielding efficient applications for image recall and enhancements and fuzzy controllers, which can be regarded as one-directional associative memories. In this study, we revisit and augment the concept of associative memories by offering some new design insights where the corresponding mappings are realized on the basis of a related collection of landmarks (prototypes) over which an associative mapping becomes spanned. In light of the bidirectional character of mappings, we have developed an augmentation of the existing fuzzy clustering (fuzzy c-means, FCM) in the form of a so-called collaborative fuzzy clustering. Here, an interaction in the formation of prototypes is optimized so that the bidirectional recall errors can be minimized. Furthermore, we generalized the mapping into its granular version in which numeric prototypes that are formed through the clustering process are made granular so that the quality of the recall can be quantified. We propose several scenarios in which the allocation of information granularity is aimed at the optimization of the characteristics of recalled results (information granules) that are quantified in terms of coverage and specificity. We also introduce various architectural augmentations of the associative structures.
Journal of the Korean Institute of Intelligent Systems
/
v.11
no.4
/
pp.340-346
/
2001
This paper proposes a new design method for the GBAM: (general bidirectional associative memory) model. Based on theoretical investigations on the GBAM: model, it is shown that the design of the GBAM:-based bidirectional associative memeories can be formulated as optimization problems called GEVPs (generalized eigenvalue problems). Since the GEVPs arising in the procedure can be efficiently solved within a given tolerance by the recently developed interior point methods, the design procedure established in this paper is very useful in practice. The applicability of the proposed design procedure is demonstrated by simple design examples considered in related studies.
Journal of the Korean Institute of Telematics and Electronics B
/
v.30B
no.6
/
pp.93-99
/
1993
In previous paper we proposed a multi-layer bidirectional associative memory (MBAM) which is an extended model of the bidirectional associative memory (BAM) into a multilayer architecture. And we showed that the MBAM has the possibility to have binary storage for easy implementation. In this paper we present a MOdified MBAM(MOMBAM) with high performance compared to MBAM and multi-layer perceptron. The contents will include the architecture, the learning method, the computer simulation results for MOMBAM with MBAM and multi-layer perceptron, and the convergence properties shown by computer simulation examples.. And we will show that the proposed model can be used as classifier with a little restriction.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2001.05a
/
pp.69-72
/
2001
In this paper, we propose a new design method for bidirectional associative memories model with high error correction ratio. We extend the conventional GBAM model using bias terms and formulate a design procedure in the form of a constrained optimization problem. The constrained optimization problem is then transformed into a GEVP(generalized eigenvalue problem), which can be efficiently solved by recently developed interior point methods. The effectiveness of the proposed approach is illustrated by a example.
The essential requirements of neural network for human skill transfer are fast convergence, high storage capacity, and strong noise immunity. Bidirectional associative memory(BAM) suffering from low storage capacity and abundance of spurious memories is rarely used for skill transfer application though it has fast and wide association characteristics for visual data. This paper suggests generalization of classical BAM structure and new learning algorithm which uses supervised learning to guarantee perfect recall starting with correlation matrix. The generalization is validated to accelerate convergence speed, to increase storage capacity, to lessen spurious memories, to enhance noise immunity, and to enable multiple association using simulation work.
Journal of the Korean Institute of Telematics and Electronics B
/
v.31B
no.9
/
pp.159-165
/
1994
In this paper, we propose a multi-layer associative neural network structure suitable for hardware implementaion with the function of performance refinement and improved robutst capability. Unlike other methods which reduce network complexity by putting restrictions on synaptic weithts, we are imposing a requirement of hidden layer neurons for the function. The proposed network has synaptic weights obtainted by Hebbian rule between adjacent layer's memory patterns such as Kosko's BAM. This network can be extended to arbitary multi-layer network trainable with Genetic algorithm for getting hidden layer memory patterns starting with initial random binary patterns. Learning is done to minimize newly defined network error. The newly defined error is composed of the errors at input, hidden, and output layers. After learning, we have bidirectional recall process for performance improvement of the network with one-shot recall. Experimental results carried out on pattern recognition problems demonstrate its performace according to the parameter which represets relative significance of the hidden layer error over the sum of input and output layer errors, show that the proposed model has much better performance than that of Kosko's bidirectional associative memory (BAM), and show the performance increment due to the bidirectionality in recall process.
Proceedings of the Optical Society of Korea Conference
/
1990.02a
/
pp.102-111
/
1990
In this thesis, an optical bidirectional inner-product associative memory model using liquid crystal television is proposed and analyzed theoretically and realized experimentally. The LCTV is used as a SLM(spatial light modulator), which is more practical than conventional SLMs, to produce image vector in terms of computer and CCD camera. Memory and input vectors are recorded into each LCTV through the video input connectors of it by using the image board. Two multi-focus hololenses are constructed in order to perform optical inner-product process. In forward process, the analog values of inner-products are measured by photodetectors and are converted to digital values which are enable to control the weighting values of the stored vectors by changing the gray levels of the pixels of the LCTV. In backward process, changed stored vectors are used to produce output image vector which is used again for input vector after thresholding. After some iterations, one of the stored vectors is retrieved which is most similar to input vector in other words, has the nearest hamming distance. The experimental results show that the proposed inner-product associative memory model can be realized optically and coincide well with the computer simulation.
Journal of the Korean Institute of Intelligent Systems
/
v.10
no.2
/
pp.161-167
/
2000
In this paper, we propose a design method for BAMs(bidirectiona1 associative memories) which can
perform the function of bidirectional association efficiently. Based on the theoretical investigation about the
properties of BAMs, we first formulate the problem of finding a BAM that can store the given pattern pairs
as stable states with high error correction ratio in the form of a constrained optimization problem. Next, we
transform the constrained optimization problem into a GEVP(genera1ized eigenvalue problem), which can be
solved by recently developed interior point methods. The applicability of the proposed method is illustrated
via design examples.
In this paper, the problem on periodic solutions of the bidirectional associative memory neural networks with both periodic coefficients and periodic time-varying delays is discussed. By using degree theory, inequality technique and Lyapunov functional, we establish the existence, uniqueness, and global asymptotic stability of a periodic solution. The obtained results of stability are less restrictive than previously known criteria, and the hypotheses for the boundedness and monotonicity on the activation functions are removed.
Journal of the Korean Institute of Telematics and Electronics B
/
v.31B
no.5
/
pp.134-140
/
1994
In this paper, an algorithm of CBAM(Combination Bidirectional Associative Memory) model proposes, analyzes and tests CBAM model `s performancess by simulating with recalls and recognitions of patterns. In learning-procedure each correlation matrix of training patterns is obtained. As each correlation matrix's some elements correspond to juxtaposition, all correlation matrices are merged into one matrix (Combination Correlation Matrix, CCM). In recall-procedure, CCM is decomposed into a number of correlation matrices by spiliting its elements into the number of elements corresponding to all training patterns. Recalled patterns are obtained by multiplying input pattern with all correlation matrices and selecting a pattern which has the smallest value of energy function. By using a CBAM model, we have some advantages. First, all pattern having less than 20% of noise can be recalled. Second, memory capacity of CBAM model, can be further increased to include English alphabets or patterns. Third, learning time of CBAM model can be reduced greatly because of operation to make CCM.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.