• Title/Summary/Keyword: Bicuculline

Search Result 52, Processing Time 0.045 seconds

The Influences of Extremely Low Frequency Magnetic Fields on Drug-Induced Convulsion in Mouse

  • Sung, Ji-Hyun;Jeong, Ji-Hoon;Kim, Jeong-Soo;Choi, Tai-Sik;Park, Joon-Hong;Kang, Hee-Yun;Kim, Young-Sil;Kim, Dong-Suk;Sohn, Uy-Dong
    • Archives of Pharmacal Research
    • /
    • v.26 no.6
    • /
    • pp.487-492
    • /
    • 2003
  • This study investigated the effects of extremely low frequency magnetic fields (ELF-MFs) on the sensitivity of seizure response to bicuculline, picrotoxin and NMDA in mice. The mice were exposed to either a sham or 20 G ELF-MFs for 24 hours. Convulsants were then administered i.p. at various doses. The seizure induction time and duration were measured and lethal dose ($LD_{50$}) and convulsant dose ($CD_{50}$) of the clonic and tonic convulsion were calculated. The analysis of glutamate, glycine, taurine and GABA of mouse brain was accomplished by HPLC. The mice exposed to ELF-MFs showed moderately higher $CD_{50}.{\;}LD_{50}$ and onset time on the bicuculline-induced seizure. However, the ELF-MFs did not influence them in the NMDA and picrotoxin-induced seizures. After the exposure to MFs exposure, the glutamate level was increased and GABA was decreased significantly in NMDA and picrotoxin-induced seizure. The level of glutamate and GABA were not changed by MFs in bicuculline-induced seizure. These results suggest that ELF-MFs may alter the convulsion susceptibility through GABAergic mechanism with the involvement of the level of glutamate and GABA.

Effect of Diazepam on the Oxytocin Induced Contraction of the Isolated Rat Uterus (Oxytocin의 자궁수축작용에 미치는 Diazepam의 영향)

  • Park, Yoon-Kee;Lee, Sung-Ho;Kwon, Oh-Cheol;Ha, Jeoung-Hee;Lee, Kwang-Youn;Kim, Won-Joon
    • Journal of Yeungnam Medical Science
    • /
    • v.9 no.2
    • /
    • pp.359-381
    • /
    • 1992
  • This study was designed to investigate the effect of diazepam on the spontaneous contraction and oxytocin induced contraction of the isolated rat uterus. Female rat(Sprague-Dawley) pretreated with oophorectomy and 4 days administration of estrogen, weighing about 200 g, was sacrificed by cervical dislocation, and the uteruses were isolated. A longitudinal muscle strip was placed in temperature controlled($37^{\circ}C$) muscle chamber containing Locke's solution and myographied isometrically. Diazepam inhibited the spontaneous contraction and oxytocin induced contraction of the isolated rat uterus in a concentration-dependent manner. GABA, muscimol, a GABA A receptor agonist, bicuculline, a competitive GAGA A receptor antagonist, picrotoxin, a non competitive GABA A receptor antagonist, baclofen, a GABA B receptor agonist, and delta-aminovaleric acid, a GABA B receptor antagonist, did not affect on the spontaneous and oxytocin induced contraction of the isolated rat uterus. The inhibitory actions of diazepam on the spontaneous and oxytocin induced contraction were not affected by all the GABA receptor agonists and antagonists, but exceptionally potentiated by bicuculline. This potentiation-effect by bicuculline was not antagonized by muscimol. In normal calcium PSS, addition of calcium restored the spontaneous contraction preinhibited by diazepam and recovered the contractile of oxytocin preinhibited by diazepam. A23187, a calcium inophore, enhanced the restoration of both the spontaneous and oxytocin induced contraction by addition of calcium. In calcium-free PSS, diazepam suppressed the restoration of spontaneous motility by addition of calcium but allowed the recovery of spontaneous motility to a considerable extent. Diazepam could not inhibit some development of contractility by oxytocin in calcium-free PSS, but inhibited the increase in contractility by subsequent addition of calcium. These results suggest that the inhibitory action of diazepam on the rat uterine motility does not depend on or related to GABA receptors and that diazepam inhibits the extracellular calcium influx to suppress the spontaneous and oxytocin induced contractilities.

  • PDF

Influence of Intraventricular Taurine on the Cardiovascular System of the Rabbit (측뇌실내 Taurine이 가토의 혈압 및 심박에 미치는 영향)

  • Lim, Dong-Yoon;Choi, Dong-Joon;Kim, Bong-Han
    • The Korean Journal of Pharmacology
    • /
    • v.28 no.1
    • /
    • pp.27-40
    • /
    • 1992
  • The purpose of the present study is an attempt to investigate the effect of intraventricular taurine, which is a naturally occuring amino acid containing sulfur and has inhibitory action in brain, on heart rate and blood pressure in the urethane anesthetized rabbits and also to elucidate the mechanism of its cardiovascular actions. Taurine $(0.15{\sim}1.5\;mg)$ injected into the lateral ventricle of anesthetized normontensive rabbits produced a dose-related fall in arterial blood pressure and heart rate, which were marked and long-lasting along with considerable respiratory depression. However, the intravenous administration of taurine at the same dose with intraventricular injection did not induce any changes in blood pressure as well as heart rate. Depressor responses induced by taurine were inhibited significantly by pretreatment with chlorisondamine, clonidine, strychnine and bicuculline but not by atropine, vagotomy, propranolol and metoclopramide. Moreover, taurine did not affect the pressor responses of norepinephrine. Taurine-induced bradycardic effects were blocked clearly by pretreatment with chlorisondamine, propranolol, clonidine, strychnine and bicuculline, while they were not influenced by atropine, vagotomy and metoclopramide. These experimental results suggest that intraventricular taurine causes long-lasting hypotensive and bradycardic actions, and that these cardiovascular effects may be exerted through taurinergic (glycinergic) and GABAergic receptors which are associated with catecholaminergic neurons in brain.

  • PDF

Effect of GABA on the Contractility of Small Intestine Isolated from Rat (흰쥐 적출 소장의 수축성에 미치는 GABA의 영향)

  • Huh, Joon-Young;Kwon, Oh-Cheol;Ha, Jeong-Hee;Lee, Kwang-Youn;Kim, Won-Joon
    • Journal of Yeungnam Medical Science
    • /
    • v.8 no.2
    • /
    • pp.95-105
    • /
    • 1991
  • This study was designed to investigate the effect of GABA and related substances on the spontaneous contraction of rat small intestine. The rats(Sprague-Dawley), weighing 200-250g, were sacrificed by cervical dislocation, and the small intestine was isolated. Longitudinal muscle strips from duodenum, jejunum and ileum were suspended in Biancani's isolated muscle chambers and myographied isometrically. GABA and muscimol, a GABA A receptor agonist relaxed the duodenum and jejunum significantly, but baclofen-induced relaxation in those muscle strips was negligible. The effectiveness of GABA and muscimol in various regions were the greatest on duodenum, and greater on jejunum than on ileum The effect of GABA and muscimol was antagonized by bicuculline, a compeptitive GABA A receptor antagonist and picrotoxin, a noncomptitive GABA A receptor antagonist. Duodenal relaxation induced by GABA and muscimol was unaffected by hexamethonium, but was prevented by tetrodotoxin. These results suggest that GABA inhibit the contractility of smooth muscle with distinct regional difference of efficacy, and the site of inhibitory action is the GABA A receptor existing at the presynaptic membrane of postganglionic excitatory nerves.

  • PDF

Morphine-induced Modulation of Nociceptive Spinal Dorsal Horn Neuronal Activities after Formalin-induced Inflammatory Pain

  • Park, Joo-Min;Li, Kang-Wu;Jung, Sung-Jin;Kim, Jun;Kim, Sang-Jeong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.2
    • /
    • pp.77-86
    • /
    • 2005
  • In this study, we examined the morphine-induced modulation of the nociceptive spinal dorsal horn neuronal activities before and after formalin-induced inflammatory pain. Intradermal injection of formalin induced time-dependent changes in the spontaneous activity of nociceptive dorsal horn neurons. In naive cats before the injection of formalin, iontophoretically applied morphine attenuated the naturally and electrically evoked neuronal responses of dorsal horn neurons. However, neuronal responses after the formalin-induced inflammation were significantly increased by morphine. Bicuculline, $GABA_A$ antagonist, increased the naturally and electrically evoked neuronal responses of dorsal horn neurons. This increase in neuronal responses due to bicuculline after the formalin-induced inflammation was larger than that in the naive state, suggesting that basal $GABA_A$ tone increased after the formalin injection. Muscimol, $GABA_A$ agonist, reduced the neuronal responses before the treatment with formalin, but not after formalin treatment, again indicating an increase in the GABAergic basal tone after the formalin injection which saturated the neuronal responses to GABA agonist. Morphine-induced increase in the spinal nociceptive responses after formalin treatment was inhibited by co-application of muscimol. These data suggest that formalin-induced inflammation increases $GABA_A$ basal tone and the inhibition of this augmented $GABA_A$ basal tone by morphine results in a paradoxical morphineinduced increase in the spinal nociceptive neuronal responses after the formalin-induced inflammation.

Central Involvement of Benzodiazepine Receptor on the Muscimol-induced Inhibition of Micturition Reflex in Rats (흰쥐의 뮤시몰투여에 의한 배뇨반사억제효과에 대한 벤조디아제핀수용체의 영향)

  • Huh, In-Hoi;Oh, Ho-Jung
    • YAKHAK HOEJI
    • /
    • v.36 no.5
    • /
    • pp.496-505
    • /
    • 1992
  • The correlation between GABA receptors($GABA_A$ and $GABA_B$ receptor) and benzodiazepine receptor on the saline infusion-induced micturition reflex contraction was studied in the female rat. To investigate the effect of ${\gamma}-aminobutyric$ acid(GABA) on the micturition reflex, exogenous GABA(10 mg/kg) and GABA transaminase inhibitor(aminooxyacetic acid; AOAA $1\;{\mu}g$) were administered intravenously(i.v.) and intracerebroventriculary(i.c.v.), respectively. In result, both GABA and AOAA inhibited the saline induced micturition reflex contraction. This AOAA induced inhibition of micturition reflex was blocked by both bicuculine. $GABA_A$ receptor antagonist, and Ro 15-1788, benzodiazepine receptor antagonist. Muscimol, $GABA_A$ receptor antagonist($0.1\;{\mu}g$ i.c.v., $3\;{\mu}g$ intrathecal; i.t., 1 mg/kg i.v.) and baclofen, $GABA_A$ receptor agonist($1\;{\mu}g$ i.c.v., $3\;{\mu}g$ i.t., 1 mg/kg i.v.) also inhibited the bladder contraction. Pretreatment of bicuculline($1\;{\mu}g$ i.c.v.), but not of 5-aminovaleric acid(AVA, $1\;{\mu}g$ i.c.v.), $GABA_B$ receptor antagonist blocked the central inhibition of muscimol. These inhibitory effects were reversed by Ro15-1788 but were potentiated by flurazepam, benzodiazepine receptor antagonist. On the other hand, the inhibitory effects of baclofen were not affected by Ro 15-1788. Diazepam and flurazepam also inhibited the micturition reflex contraction when they were administered $3\;{\mu}g$ i.c.v., $10\;{\mu}g$ i.t., $10\;{\mu}M$, $30\;{\mu}M$ transurethrally, respectively. In conclusion, these results suggest that the micturition reflex is mediated by $GABA_A$, $GABA_B$ receptor and benzodiazepine receptor. The bezodiazepines increase the receptor binding of GABA to the $GABA_A$ receptor, so that the benzodiiazepines show the synergistic effect on the inhibition of the micturition reflex contraction, but not to the $GABA_B$ receptor.

  • PDF

GABAB Receptor Modulation on the Antinociception of Intrathecal Sildenafil in the Rat Formalin Test (쥐의 포르말린 시험에서 척수강 Sildenafil의 항통각효과에 대한 GABAB 수용체 조절성)

  • Kim, Woong Mo;Yoon, Myung Ha;Lee, Hyung Gon;Han, Yong Gu;Kim, Yeo Ok;Huang, Lan Ji;Cui, Jin Hua
    • The Korean Journal of Pain
    • /
    • v.20 no.2
    • /
    • pp.106-110
    • /
    • 2007
  • Background: A phosphodiesterase 5 inhibitor, sildenafil, has been effective against nociception. Several lines of evidence have demonstrated the role of the GABAergic pathway in the modulation of nociception. The impact of the GABA receptors on sildenafil was studied using the formalin test at the spinal level. Methods: Male SD rats were prepared for intrathecal catheterization. The formalin test was induced by subcutaneous injection of formalin solution. The change in the activity of sildenafil was examined after pre-treatment with GABA receptor antagonists ($GABA_A$ receptor antagonist, bicuculline; $GABA_B$ receptor antagonist, saclofen). Results: Intrathecal sildenafil dose-dependently attenuated the flinching observed during phase 1 and 2 in the formalin test. The antinociceptive effect of sildenafil was reversed by the $GABA_B$ receptor antagonist (saclofen) but not by the $GABA_A$ receptor antagonist (bicuculline) in both phases. Conclusions: Intrathecal sildenafil suppressed acute pain and the facilitated pain state. The antinociception of sildenafil is mediated via the $GABA_B$ receptor, but not the $GABA_A$ receptor, at the spinal level.

The antinociceptive effect of artemisinin on the inflammatory pain and role of GABAergic and opioidergic systems

  • Dehkordi, Faraz Mahdian;Kaboutari, Jahangir;Zendehdel, Morteza;Javdani, Moosa
    • The Korean Journal of Pain
    • /
    • v.32 no.3
    • /
    • pp.160-167
    • /
    • 2019
  • Background: Pain is a complex mechanism which involves different systems, including the opioidergic and GABAergic systems. Due to the side effects of chemical analgesic agents, attention toward natural agents have been increased. Artemisinin is an herbal compound with widespread modern and traditional therapeutic indications, which its interaction with the GABAergic system and antinoniceptive effects on neuropathic pain have shown. Therefore, this study was designed to evaluate the antinociceptive effects of artemisinin during inflammatory pain and interaction with the GABAergic and opioidergic systems by using a writhing response test. Methods: On the whole, 198 adult male albino mice were used in 4 experiments, including 9 groups (n = 6) each with three replicates, by intraperitoneal (i.p.) administration of artemisinin (2.5, 5, and 10 mg/kg), naloxone (2 mg/kg), bicuculline (2 mg/kg), saclofen (2 mg/kg), indomethacin (5 mg/kg), and ethanol (10 mL/kg). Writhing test responses were induced by i.p. injection of 10 mL/kg of 0.6% acetic acid, and the percentage of writhing inhibition was recorded. Results: Results showed significant dose dependent anti-nociceptive effects from artemisinin which, at a 10 mg/kg dose, was statistically similar to indomethacin. Neither saclofen nor naloxone had antinociceptive effects and did not antagonize antinociceptive effects of artemisinin, whereas bicuculline significantly inhibited the antinocicptive effect of artemisinin. Conclusions: It seems that antinocicptive effects of artemisinin are mediated by $GABA_A$ receptors.

Anxiolytic effect of Korean Red Ginseng through upregulation of serotonin and GABA transmission and BDNF expression in immobilized mice

  • Bui, Bich Phuong;Nguyen, Phuong Linh;Do, Ha Thi Thu;Cho, Jungsook
    • Journal of Ginseng Research
    • /
    • v.46 no.6
    • /
    • pp.819-829
    • /
    • 2022
  • Background: Anxiolytic properties of Korean Red Ginseng (KRG) have been previously reported. However, the exact mechanism(s) of action remains to be elucidated. The present study investigated the effect of KRG on immobilization-induced anxiety-like behaviors in mice and explored the involvement of the serotonin and GABA systems and BDNF in the anxiolytic action. Methods: Mice were orally administered with KRG (200 mg/kg/day) for 4 weeks and immobilized once daily for 2 h. p-Chlorophenylalanine (p-CPA) was intraperitoneally injected on day 22-28, and flumazenil or bicuculline was injected on day 25-28. After behavioral evaluations, brains were dissected for biochemical analyses. Results: KRG improved immobilization-induced anxiety-like behaviors in mice, as assessed by the elevated plus maze (EPM) and marble burying tests (MBT). The anxiolytic effect of KRG was comparable to that of fluoxetine, a reference drug clinically used for anxiety disorders. A serotonin synthesis inhibitor, p-CPA, blocked the effect of KRG in the EPM and MBT, indicating the requirement of serotonin synthesis for anxiolytic action. In addition, the anxiolytic effect of KRG was inhibited by bicuculline (a GABAA antagonist) in MBT, implying the involvement of GABA transmission. Western blotting analyses revealed that KRG upregulated the expression of tryptophan hydroxylase and GABAA receptor in the brain, which was blocked by p-CPA. Enhanced BDNF expression by KRG in the hippocampus was also indicated to mediate the anxiolytic action of KRG in immobilized mice. Conclusion: KRG exhibited the anxiolytic effect in immobilized mice by multiple mechanisms of action, involving enhanced serotonin and GABA transmissions and BDNF expression.