• 제목/요약/키워드: Biaxial strength

검색결과 191건 처리시간 0.117초

양축 면내 압축하중 하의 이중판보강 선박판부재의 설계시스템 구축 (Development of Ship Plate Member Design System Reinforced by Doubler Plate Subjected to Biaxial In-plane Compressive Load)

  • 함주혁
    • 한국해양공학회지
    • /
    • 제30권4호
    • /
    • pp.294-302
    • /
    • 2016
  • Because of the importance of steel material saving and rational ship structural design due to the rapid increase in steel prices, a ship structural design system was developed for plate members reinforced by doubler plates subjected to biaxial in-plane compressive loads. This paper mainly emphasizes the design system improvement and upgrade according to the change in the in-plane loading condition of the doubler plate from the single load discussed in a previous paper to the biaxial in-plane compressive load discussed in this paper. A direct design process by a structural designer was added to this developed optimized system to increase the design efficiency and provide a way of directly inserting a designer's decisions into the design system process. As the second stage of preliminary steps of doubler design system development, design formulas subjected to these biaxial loads used in the doubler plate design system were suggested. Based on the introduction of influence coefficients $K_t_c$, $K_t_d$, $K_b_d$ and $K_a_d$ based on the variations in the doubler length, breadth, doubler thickness, and average corrosion thickness of the main plate reinforced by the doubler plate, respectively, the design formulas for the equivalent plate thickness of the main plate reinforced by the doubler plate were also developed, and a hybrid design system using these formulas was suggested for the doubler plate of a ship structure subjected to a biaxial in-plane compressive load. Using this developed design system for a main plate reinforced by a doubler plate was expected to result in a more rational reinforced doubler plate design considering the efficient reinforcement of ship plate members subjected to these biaxial loads. Additionally, a more detail structural analysis through local strength evaluations will be performed to verify the efficiency of the optimum structural design for a plate member reinforced by a doubler plate.

지르코니아 전장 세라믹의 파절강도에 관한 비교 연구 (Comparative Study in Fracture Strength of Zirconia Veneering Ceramics)

  • 이정환;안재석
    • 치위생과학회지
    • /
    • 제10권5호
    • /
    • pp.335-340
    • /
    • 2010
  • This study was performed to evaluate the fracture strength of the dental zirconia veneering ceramics for zirconia ceramic core. Six commercial zirconia veneering ceramics were used in this study, namely E-Max(Ivoclar vivadent, Inc, Liechtenstein), Creation ZI(KLEMA Dental produckte GmbH, Austria), Cercon ceram kiss(Degudent, GmbH, Hanau-Wolfgang, Germany), Triceram(Dentaurum, Ispringen, Germany), Zirkonzahn(Zirkonzahn GmbH, Italy), Zirmax(Alpadent, korea). All samples were prepared according to the relevant instructions of manufacture. Disc specimens were prepared to the final dimensions of 17 mm in diameter and 1.5 mm in thickness. The biaxial flexure strength test was conducted using a ball-on-three-ball method. All specimens were tested in a moisture-free environment. Average flexural strengths were analyzed with Weibull analysis and one-way analysis of variance(ANOVA). Significant differences were founded between the mean flexural strength values of five commercials zirconia veneering ceramics and the other. The flexural strengths and Weibull modulus were similar to those of five groups E-Max(EM), Creation ZI(CR), Cercon ceram kiss(CE), Triceram(TR), Zirkonzahn(ZI) with the exception of Zirmax(ZM). The biaxial flexural strength from Cercon ceram kiss(CE) was higher than those of other groups. Fracture analysis showed similar results for these five groups.

중공형상 및 재료의 영향을 고려한 도넛형 이방향 중공슬래브의 일방향 전단강도 (One-Way Shear Strength of Donut Type Biaxial Hollow Slab Considered Hollow Shapes and Materials)

  • 정주홍;이승창;최창식;최현기
    • 콘크리트학회논문집
    • /
    • 제24권4호
    • /
    • pp.391-398
    • /
    • 2012
  • 이 연구는 도넛형 중공형성체를 사용한 이방향 중공슬래브의 일방향 전단 성능에 관한 연구이다. 최근 건물의 고층화 및 장경간화로 인하여, 다양한 자중 저감형 슬래브 공법에 대한 연구가 진행되고 있다. 이방향 중공슬래브 시스템은 구조성능 저하를 최소화하면서 자중을 효율적으로 줄일 수 있는 시스템으로 알려져 있다. 하지만 기존 연구에 따르면 이방향 중공슬래브는 일반 RC 슬래브에 비해 낮은 전단강도를 가지고 있으며, 이는 중공형상 및 중공형성체 재료에 의해 영향을 받는 것으로 보고되고 있다. 또한 현재의 설계기준은 이방향 중공슬래브의 일방향 전단강도에 대해 명확한 기준을 제시하지 못하고 있다. 도넛형 이방향 중공슬래브의 일방향 전단강도를 확인하기 위하여, 총 4개의 전단강도 실험체를 제작/실험하였다. 그 중 한 개의 실험체는 기준 RC 실험체이고 나머지는 모두 중공슬래브이다. 변수는 도넛형과 비도넛형 두 가지의 중공형상 및 일반 플라스틱과 유리섬유 강화 플라스틱 중공형성체로 설정하였다. 실험 결과, 중공형상과 재료에 따라 이방향 중공슬래브의 전단강도는 차이를 보임을 확인할 수 있었다. 또한 이 결과를 바탕으로 기존의 구형 중공슬래브의 일방향 전단강도 산정시 사용되는 유효단면 산정법의 도넛형 이방향 중공슬래브 적용에 대한 문제점을 도출하였다.

면내 전단하중과 양축압축하중을 받는 선박 판부재의 이중판 설계시스템 개발 (Development of Doubler Design System for Ship Plate Members Subjected to In-plane Shear and Biaxial Compressive Loads)

  • 함주혁
    • 대한조선학회논문집
    • /
    • 제54권3호
    • /
    • pp.242-249
    • /
    • 2017
  • A design system for doubler reinforcement of the ship plate members subjected to in-plane shear and biaxial compressive loads was developed. This design system of doubler reinforcement on ship plate members established by design supporting system and this system was based on the buckling evaluation process of ship plate members for these in-plane loads. Each design parameters were suggested by equations as the form of influence coefficients for the doubler reinforcement subjected to the various in-plane loads including shear load. Strength of doubler plate member reinforced on the plate member could be suggested by the equivalent flat plate thickness after the consideration of corelation equations in the design system of doubler reinforcement. Level of strength recovery of ship plate members for these in-plane loads according to the local reinforcement by doubler could be suggested by use of this design system in the initial repair design stage of shipyards.

도넛형 중공형성체를 사용한 중공슬래브의 뚫림 전단 성능에 관한 실험적 연구 (Experimental Study about Punching Shear Strength of Biaxial Hollow slab with Donut type Hollow Sphere)

  • 정주홍;최현기;이승창;최창식
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2010년도 춘계 학술대회 제22권1호
    • /
    • pp.59-60
    • /
    • 2010
  • 본 연구는 도넛형 중공 형성체를 적용한 중공 슬래브의 뚫림 전단 성능을 실험적으로 파악하였다. 그리고 이를 통하여, 위험단면 내 중공 슬래브 적용가능성을 검토하였으며, 중공형성체 고정철물의 뚫림 전단 보강성능을 파악하였다.

  • PDF

2축휨과 축하중을 받는 임의 단면 형태의 철근 콘크리트 부재의 설계 (Design of R.C.Members with General Shape Subjected to Biaxial Bending)

  • 문선미;이종권;이병해
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1993년도 가을 학술발표회논문집
    • /
    • pp.139-148
    • /
    • 1993
  • A computerized numerical method is presented for the design and/or the investigation of RC members with general shape and material properties subjected to axial load and biaxial bending moment. Slenderness effects can also be considered with the use of the moment magnification factor. The method is based on the summation of stress result- ants on a small area of the cross section which enables the determination of strength interaction diagrams, load contours and moment-curvature relationships for the general section. Thus the presented program HYCOL can be used as a direct tool for design and/or investigation of RC members with general shape subjected to biaxial bending. The accuracy of program HYCOL is established by comparison with experimental results.

  • PDF

Numerical investigation on the response of circular double-skin concrete-filled steel tubular slender columns subjected to biaxial bending

  • Abu-Shamah, Awni;Allouzi, Rabab
    • Steel and Composite Structures
    • /
    • 제37권5호
    • /
    • pp.533-549
    • /
    • 2020
  • Recently, Concrete-filled double skin steel tubular (CFDST) columns have proven an exceptional structural resistance in terms of strength, stiffness, and ductility. However, the resistance of these column members can be severely affected by the type of loading in which bending stresses increase in direct proportion with axial load and eccentricity value. This paper presents a non-linear finite element based modeling approach that studies the behavior of slender CFDST columns under biaxial loading. Finite element models were calibrated based on the outcomes of experimental work done by other researchers. Results from simulations of slender CFDST columns under axial loading eccentric in one direction showed good agreement with the experimental response. The calibrated models are expanded to a total of thirty models that studies the behavior of slender CFDST columns under combined compression and biaxial bending. The influences of parameters that are usually found in practice are taken into consideration in this paper, namely, eccentricity-to-diameter (e/D) ratios, slenderness ratios, diameter-to-thickness (D/t) ratios, and steel contribution ratios. Finally, an analytical study based on current code provisions is conducted. It is concluded that South African national standards (2011) provided the most accurate results contrasted with the Eurocode 4 (2004) and American Institute of Steel Construction (2016) that are found to be conservative. Accordingly, correction factors are proposed to the current design guidelines to provide more satisfactory results.

Numerical simulation of shear mechanism of concrete specimens containing two coplanar flaws under biaxial loading

  • Sarfarazi, Vahab;Haeri, Hadi;Bagheri, Kourosh
    • Smart Structures and Systems
    • /
    • 제22권4호
    • /
    • pp.459-468
    • /
    • 2018
  • In this paper, the effect of non-persistent joints was determined on the behavior of concrete specimens subjected to biaxial loading through numerical modeling using particle flow code in two dimensions (PFC2D). Firstly, a numerical model was calibrated by uniaxial, Brazilian and triaxial experimental results to ensure the conformity of the simulated numerical model's response. Secondly, sixteen rectangular models with dimension of 100 mm by 100 mm were developed. Each model contains two non-persistent joints with lengths of 40 mm and 20 mm, respectively. The angularity of the larger joint changes from $30^{\circ}$ to $90^{\circ}$. In each configuration, the small joint angularity changes from $0^{\circ}$ to $90^{\circ}$ in $30^{\circ}$ increments. All of the models were under confining stress of 1 MPa. By using of the biaxial test configuration, the failure process was visually observed. Discrete element simulations demonstrated that macro shear fractures in models are because of microscopic tensile breakage of a large number of bonded discs. The failure pattern in Rock Bridge is mostly affected by joint overlapping whereas the biaxial strength is closely related to the failure pattern.

AZ31 마그네슘 합금판재의 소성변형특성 (Plastic Deformation Characteristic of AZ31 Magnesium Alloy Sheet)

  • 박진기;;유봉선;김영석
    • 소성∙가공
    • /
    • 제14권6호
    • /
    • pp.520-526
    • /
    • 2005
  • In recent years, there has been a growth of the manufacture and application of magnesium products because of its small specific gravity as well as its relatively high strength. However, there are so many studies to assure good formability because magnesium sheet alloy is difficult to form. In this study, uniaxial tensile and biaxial tensile tests of AZ31 magnesium sheet alloy with thickness of 1.2mm were performed at room temperature. Uniaxial tensile tests were performed until $7{\%}$ of engineering strain. Lankford values and stress-strain curve were obtained. Biaxial tensile tests with cruciform specimen were performed until the breakdown of the specimen occurs. The yield loci were calculated by application of plastic work theory. The results are compared with the theoretical predictions based on the Hill and Logan-Hosford model. In this study, Hill's 1979 yield function for the case of m=2.8 and Logan-Hosford yield function for the case of M=8 give good agreements with experimental results. However, next study will be performed at warm-temperature because the specimens are broken under the $0.5{\%}$ of equivalent strain at biaxial tensile test.

Ball-on-3-ball 시험에서 이축 강도의 결정 (Determination of the Biaxial Strength by Ball-on-3-Ball Test)

  • 박성은;이중현;이홍림
    • 한국세라믹학회지
    • /
    • 제36권3호
    • /
    • pp.225-230
    • /
    • 1999
  • Ball-on-3-ball 시험에서 이축 강도를 결정하기 위한 방법에 대해 고찰하였다. 알루미나 시편을 이용하여 ball-on-3-ball 시험과 poston-on-3-ball 시험을 하여 이축 강도를 측정하였다. piston-on-3-ball 시험에서의 강도 식과 등가 반지름을 이용하여 계산한 ball-on-3-ball 시험에서의 이축 강도와, piston-on-3-ball 시험에서의 이축 강도를 분산 분석(ANOVA)한 결과, 두 평균이 동일하다고 할 수 있었다. 따라서, ball-on-3-ball 시험에서의 이축 강도는 piston-on-3-ball 시험에서의 강도 식과 등가 반지름을 이용하여 계산할 수 있다. 또한, 유한 요소법을 이용하여 ball-on-3-ball 시험시 시편에 인가되는 응력 분포를 고찰해 보았다.

  • PDF