• Title/Summary/Keyword: Biaxial flexure test

Search Result 26, Processing Time 0.019 seconds

An Experimental Study on the Flexural Behavior of the Round Concrete Panels according to the Evaluation Method of Biaxial Flexural Tensile Strengths (휨인장강도 평가 방법에 따른 콘크리트 원형패널의 휨거동에 관한 실험적 연구)

  • Kim, Ji-Hwan;Zi, Goang-Seup
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.4
    • /
    • pp.479-486
    • /
    • 2011
  • In this study, we conducted experiment and finite element analysis on the flexural behavior of the round concrete panels according to the evaluation method of biaxial flexural tensile strengths. The Round Panel Test (RPT) and the Biaxial Flexure Test (BFT) were used to determine the biaxial flexural strength of round plain concrete panels. In order to understand the stress distribution on the panels, we measured load-strain relationship at the center of the panels' bottom surface. Test results show that fracture pattern in RPT and BFT panels are similar, and the tensile stress distribution is uniform in all directions at the center of the bottom surface of the panels for both RPT and BFT. The distribution of stresses in two test specimens coincided with the analysis result. The average biaxial flexural strength of RPT is about 29% greater than those of the BFT. The coefficient of variations (COV) of the RPT and BFT for the biaxial flexure strength is 8%, 6%, respectively, which indicates that BFT method is useful and reliable for determining biaxial flexural strengths of the concrete.

Evaluation of Residual Strength in Damaged Brittle Materials (취성재료의 손상후 잔류강도 평가)

  • Sin, Hyeong-Seop;O, Sang-Yeop;Seo, Chang-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.5
    • /
    • pp.932-938
    • /
    • 2002
  • In structural applications, brittle materials such as soda-lime glasses and ceramics are usually subjected to multiaxial stress state. Brittle materials with cracks or damage by foreign object impacts are apt to fracture abruptly from cracks, because of their properities of very high strength and low fracture toughness. But in most cases, the residual strength of structural members with damage has been tested under uniaxial stress condition such as the 4-point bend test. Depending upon the crack pattern developed, the strength under multiaxial stress state might be different from the one under uniaxial. A comparative study was carried out to investigate the influence of stress state on the residual strength evaluation. In comparable tests, the residual strength under biaxial stress state by the ball-on-ring test was greater than that under the uniaxial one by the 4-point bend test, when a small size indendation crack was introduced. In the case that crack having an angle of 90deg. to the applied stress direction, the ratio of biaxial to uniaxial flexure strength was about 1.12. The residual strength was different from crack angles to loading direction when it was evaluated by the 4-point bend test. The ratio of residual strength of 45deg. crack to 90deg. one was about 1.20. In the case of specimen cracked by a spherical impact, it was shown that an overall decrease in flexure strength with increasing impact velocity, and the critical impact velocity for formation of a radial and/or cone crack was about 30m/s. In those cases that relatively large cracks were developed as compared with the case of indented cracks, the ratio of residual strength under biaxial stress state to one uniaxial became small.

The comparison of relative reliability on biaxial and three point flexure strength methods of light curing composite resin

  • Seo, Deog-Gyu;Rho, Byoung-Duck
    • Proceedings of the KACD Conference
    • /
    • 2003.11a
    • /
    • pp.575-575
    • /
    • 2003
  • The majority of studies comparing the mechanical properties of brittle dental restorative materials now include use of the Weibull Modulus (m). This modulus is determined from analysis of the statistical distribution of strength measurements, which can be determined using a variety of methods, including biaxial flexure, 3pt bend and 4pt bend. In comparing materials it is usually implicitly assumed that the modulus (m) is independent of test method although it is recognised to be highly dependent on flaw distributions. However, in some cases flaw distributions can be modified by sample preparation and test method may modify stressing patterns. This study investigated the pattern of strength and m in two light setting materials.

  • PDF

Mechanical Properties of Zirconia Reinforced Glass-Ceramic (지르코니아 강화형 Glass-Ceramic의 기계적 성질)

  • Park, Eun-Eui;Dong, Jin-Keun;Lee, Hae-Hyoung;Song, Ki-Chang;Oh, Sang-Chun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.17 no.3
    • /
    • pp.199-204
    • /
    • 2001
  • This study was to investigate the reused possibility of zirconia reinforced glass-ceramic(IPS Empress Cosmo ceramic) with sprue button in the flexure strength and fracture toughness. 40 disk-shaped ceramic specimens (20 specimens: as-pressed material; 20 specimens: reused material) with approximately 1.7 mm thickness and 15 mm diameter were prepared by "lost wax" technique. The remnants(sprue buttons) were used for repressing. The surface treatments for the discs were gradually abraded with 320, 800, 1200, and 2000 grit SiC sandpaper. The specimens were evaluated their flexure strength with the biaxial flexure jig(ball-on-three balls) and their fracture toughness with Vickers Indentation-microfracture test. The Weibull moduli were calculated for biaxial flexural strength. The mean flexure strength and fracture toughness of each group were $122.2{\pm}18.3MPa$, $1.00{\pm}0.09MPa{\cdot}m^{0.5}$ (as-pressed ceramics), and $122.2{\pm}20.3MPa$, $1.01{\pm}0.10MPa{\cdot}m^{0.5}$ (reused ceramics). There were no significant differences in the strength and the fracture toughness between the as-pressed and the reused IPS Empress Cosmo ceramic (P>0.05). This implied zirconia reinforced glass-ceramic(IPS Empress Cosmo ceramic) could be used one more time by reusing of sprue button in the flexure strength and fracture toughness.

  • PDF

Effect of mechanical surface treatment on the fracture resistance and interfacial bonding failure of Y-TZP zirconia (Y-TZP zirconia의 기계적 표면처리가 파절저항과 접착계면 실패에 미치는 영향)

  • Yi, Yang-Jin
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.30 no.2
    • /
    • pp.102-111
    • /
    • 2014
  • Purpose: Surface damage and bonding strength difference after micromechanical treatment of zirconia surface are to be studied yet. The aim of this study was to evaluate the difference of fracture resistance and bonding strength between more surface-damaged group from higher air-blasting particle size and pressure, and less damaged group. Materials and Methods: Disk shape zirconia ($LAVA^{TM}$) was sintered and air-blasted with $30{\mu}m$ particle size (Cojet), under 2.8 bar for 15 seconds, $110{\mu}m$ particle size (Rocatec), under 2.8 bar for 15 seconds, and $110{\mu}m$ particle size (Rocatec), under 3.8 bar for 30 seconds respectively. Biaxial flexure test and bonding failure load test were performed serially (n = 10 per group). For bonding test, specimens were bonded on the base material having similar modulus of elasticity of dentin with $200{\mu}m$-thick resin cement for tension of surface damage. Failure load of bonding was detected with acoustic emission (AE) sensor. Results: There were no significant differences both in the biaxial flexure test and bonding failure load test between groups (P > 0.05). Sub-surface cracks were all radial cracks except for two specimens. Conclusion: Within the limitations of no aging under monotonic load test, surface damage from higher air-blasting particle size and pressure was not significant. Evaluations of failure load with bonded zirconia disks was clinically relevant modality for surface damage and bonding strength, simultaneously.

EFFECT OF $CEO_2$ ADDITION IN GLASS COMPOSITION ON THE STRENGTH OF ALUMINA-GLASS COMPOSITES (알루미나-유리 복합체용 글래스의 조성에서 $CeO_2$의 함량변화가 강도에 미치는 영향)

  • Lee, Hwa-Jin;Song, Kwang-Yeob;Kang, Jeong-Kil
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.5
    • /
    • pp.595-605
    • /
    • 2000
  • Dental ceramics have good aesthetics, biocompatibility, low thermal conductivity, abrasion resistance, and color stability. However poor resistance to fracture and shrinkage during firing process have been limiting factors in their use, particularly in multiunit ceramic restorations. A new method for making all-ceramic crowns that have high strength and low processing shrinkage has been developed and is referred to as the Vita In-Ceram method. This study was performed to investigate the effect of $CeO_2$ addition in borosilicate glasses on the strength of alumina-glass composites. Porous alumina compacts were prepared by slip casting and sintered at $1,100^{\circ}C$ for 2 hours. Dense composites were made by infiltration of molten glass into partially sintered alumina at $1,140^{\circ}C$ for 4 hours. Specimens were polished sequentially from #800 to #2000 diamond disk. and the final surface finishing on the tensile side was received an additional polishing sequence through $1{\mu}m$ diamond paste. Biaxial flexure test was conducted by using ball-on-three-ball method at a crosshead speed of 0.5mm/min. To examine the microstructural aspect of crack propagation in the alumina-glass composites, Vickers-produced indentation crack was made on the tensile surface at a load of 98.0 N and dwell time of 15 sec, and the radial crack patterns were examined by an optical microscope and a scanning electron microscope. The results obtained were summarized as follows; 1. The porosity rates of partially sintered alumina decreased with the rising of firing temperature. 2. The maximum biaxial flexure strength of 423.5MPa in alumina-glass composites was obtained with an addition of 3 mol% $CeO_2$ in glass composition and strength values showed the aspect of decrease with the increase of $CeO_2$ content. 3 The biaxial flexure strength values of alumina-glass composites were decreased with rising the firing temperature. 4. Observation of the fracture surfaces of alumina-glass composites indicated that the enhancement of strength in alumina-glass composites was due to the frictional or geometrical inter-locking of rough fracture surfaces and ligamentary bridging by intact islands of materials left behind the fracture front.

  • PDF

THE COMPARISON OF RELATIVE RELIABILITY ON BIAXIAL AND THREE POINT FLEXURAL STRENGTH TESTING METHODS OF LIGHT CURING COMPOSITE RESIN (광중합형 레진의 3점 굴곡 강도와 이축 굴곡 강도 측정 방법에 대한 상대적 신뢰도의 비교)

  • Seo, Deog-Gyu;Roh, Byoung-Duck
    • Restorative Dentistry and Endodontics
    • /
    • v.31 no.1
    • /
    • pp.58-65
    • /
    • 2006
  • The possibility of applying a hi-axial flexure strength test on composite resin was examined using three point and hi-axial flexure strength tests to measure the strength of the light-cured resin and to compare the relative reliability using the Weibull modulus. The materials used in this study were light-curing restorative materials, $MICRONEW^{TM},\;RENEW^{(R)}$ (Bisco, Schaumburg, USA). The hi-axial flexure strength measurements used the piston-on-3-ball test according to the regulations of the International Organization for Standardization (ISO) 6872 and were divided into 6 groups, where the radius of the specimens were 12mm (radius connecting the 3-balls: 3.75mm), 16 mm(radius connecting the 3-balls: 5mm), and the thickness were 0.5mm, 1mm, 2mn for each radius. The hi-axial flexure strength of the $MICRONEW^{TM}\;and\;RENEW^{(R)}$ were higher than the three point flexure strength and the Weibull modulus value were also higher in all of the bi-axial flexure strength groups, indicating that the hi-axial strength test is relatively less affected by experimental error. In addition, the 2 mm thick specimens had the highest Weibull modulus values in the hi-axial flexure strength test, and the $MICRONEW^{TM}$ group showed no significant statistical difference (p>0.05). Besides the 2mm $MICRONEW^{TM}$ group, each group showed significant statistical differences (p<0.05) according to the thickness of the specimen and the radius connecting the 3-balls. The results indicate that for the 2mm group, the hi-axial flexure strength test is a more reliable testing method than the three point flexure strength test.

Nonlinear finite element analysis of four-pile caps supporting columns subjected to generic loading

  • de Souza, Rafael Alves;Kuchma, Daniel Alexander;Park, Jung-Woong;Bittencourt, Tulio Nogueira
    • Computers and Concrete
    • /
    • v.4 no.5
    • /
    • pp.363-376
    • /
    • 2007
  • The paper presents the development of an adaptable strut-and-tie model that can be applied to the design or analysis of four-pile caps that support axial compression and biaxial flexure from a supported rectangular column. Due to an absence of relevant test data, the model is validated using nonlinear finite element analyses (NLFEA). The results indicate that the use of the proposed model would lead to safe and economical designs. The proposed model can be easily extended to any number of piles, providing a rational procedure for the design of wide range of pile caps.

Comparative Study in Fracture Strength of Zirconia Veneering Ceramics (지르코니아 전장 세라믹의 파절강도에 관한 비교 연구)

  • Lee, Jung-Hwan;Ahn, Jae-Seok
    • Journal of dental hygiene science
    • /
    • v.10 no.5
    • /
    • pp.335-340
    • /
    • 2010
  • This study was performed to evaluate the fracture strength of the dental zirconia veneering ceramics for zirconia ceramic core. Six commercial zirconia veneering ceramics were used in this study, namely E-Max(Ivoclar vivadent, Inc, Liechtenstein), Creation ZI(KLEMA Dental produckte GmbH, Austria), Cercon ceram kiss(Degudent, GmbH, Hanau-Wolfgang, Germany), Triceram(Dentaurum, Ispringen, Germany), Zirkonzahn(Zirkonzahn GmbH, Italy), Zirmax(Alpadent, korea). All samples were prepared according to the relevant instructions of manufacture. Disc specimens were prepared to the final dimensions of 17 mm in diameter and 1.5 mm in thickness. The biaxial flexure strength test was conducted using a ball-on-three-ball method. All specimens were tested in a moisture-free environment. Average flexural strengths were analyzed with Weibull analysis and one-way analysis of variance(ANOVA). Significant differences were founded between the mean flexural strength values of five commercials zirconia veneering ceramics and the other. The flexural strengths and Weibull modulus were similar to those of five groups E-Max(EM), Creation ZI(CR), Cercon ceram kiss(CE), Triceram(TR), Zirkonzahn(ZI) with the exception of Zirmax(ZM). The biaxial flexural strength from Cercon ceram kiss(CE) was higher than those of other groups. Fracture analysis showed similar results for these five groups.

Biaxial Interaction and Load Contour Method for Reinforced Concrete C- and H-shaped Structural Walls (C형 및 H형 철근콘크리트 구조벽체의 2축 상호작용과 등하중법)

  • Nam, Hye-Sung;Eom, Tae-Sung
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.2
    • /
    • pp.189-200
    • /
    • 2017
  • Nonplanar structural walls with C-shaped and H-shaped sections have been used as an efficient lateral force-resisting system for building structures. Since the nonplanar walls are subjected to axial load and bending moments about two orthogonal axes, complicated section analysis is required for flexure-compression design. In the present study, a straightforward design method for biaxially loaded C- and H-shaped walls was proposed by modifying the existing load contour method for columns with symmetric solid sections. For this, a strain compatibility section analysis program that can calculate biaxial moment strengths of arbitrary wall section was developed and its validity was verified by comparing with existing test results. Then, through parametric study, the interaction of biaxial moments at constant axial loads in prototype C- and H-shaped walls was investigated. The results showed that, due to unsymmetrical geometry of the wall sections, the biaxial interaction was significantly affected by the moment directions and axial loads. From those investigations, non-dimensional contour equations of the biaxial moments at constant axial loads for C- and H-shaped walls were suggested. Further, design examples using the proposed contour equations were given for engineering practice.