• Title/Summary/Keyword: Biaxial Stress Field

Search Result 23, Processing Time 0.024 seconds

Limit state assessment of nodal zone capacity in strut-and-tie models

  • Tjhin, Tjen N.;Kuchma, Daniel A.
    • Computers and Concrete
    • /
    • v.4 no.4
    • /
    • pp.259-272
    • /
    • 2007
  • A method based on the lower-bound theorem of limit analysis is presented for the capacity assessment of nodal zones in strut-and-tie models. The idealized geometry of the nodal zones is formed by the intersection of effective widths of the framing struts and ties. The stress distribution is estimated by dividing the nodal zones into constant stress triangles separated by lines of stress discontinuity. The strength adequacy is verified by comparing the biaxial stress field in each triangle with the corresponding failure criteria. The approach has been implemented in a computer-based strut-and-tie tool called CAST (Computer-Aided Strut-and-Tie). An application example is also presented to illustrate the approach.

Effect of confining stress on representative elementary volume of jointed rock masses

  • Wu, Na;Liang, Zhengzhao;Li, Yingchun;Qian, Xikun;Gong, Bin
    • Geomechanics and Engineering
    • /
    • v.18 no.6
    • /
    • pp.627-638
    • /
    • 2019
  • Estimation of representative elementary volume (REV) of jointed rock masses is critical to predict the mechanical behavior of field-scale rock masses. The REV of jointed rock masses at site is strongly influenced by stress state. The paper proposed a method to systematically studied the influence of confining stress on the REV of jointed rock masses with various strengths (weak, medium and strong), which were sourced from the water inlet slope of Xiaowan Hydropower Station, China. A finite element method considering material heterogeneity was employed, a series of two-dimensional (2D) models was established based on the Monte-Carlo method and a lot of biaxial compressive tests were conducted. Numerical results showed that the REV of jointed rock masses presented a step-like reduction as the normalized confining stress increased. Confining stress weakened the size effect of jointed rock masses, indicating that the REV determined under uniaxial compression test can be reasonably taken as the REV of jointed rock masses under complexed in-situ stress environment.

Prediction of Error due to Eccentricity of Hole in Hole-Drilling Method Using Neural Network

  • Kim, Cheol;Yang, Won-Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.11
    • /
    • pp.1359-1366
    • /
    • 2002
  • The measurement of residual stresses by the hole-drilling method has been used to evaluate residual stresses in structural members. In this method, eccentricity can usually occur between the hole center and rosette gage center. In this study, we obtained the magnitude of the error due to eccentricity of a hole through the finite element analysis. To predict the magnitude of the error due to eccentricity of a hole in the biaxial residual stress field, it could be learned through the back propagation neural network. The prediction results of the error using the trained neural network showed good agreement with FE analyzed results.

Buckling characteristics and static studies of multilayered magneto-electro-elastic plate

  • Kiran, M.C.;Kattimani, S.C.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.6
    • /
    • pp.751-763
    • /
    • 2017
  • This article deals with the buckling behaviour of multilayered magneto-electro-elastic (MEE) plate subjected to uniaxial and biaxial compressive (in-plane) loads. The constitutive equations of MEE material are used to derive a finite element (FE) formulation involving the coupling between electric, magnetic and elastic fields. The displacement field corresponding to first order shear deformation theory (FSDT) has been employed. The in-plane stress distribution within the MEE plate existing due to the enacted force is considered to be equivalent to the applied in-plane compressive load in the pre-buckling range. The same stress distribution is used to derive the potential energy functional. The non-dimensional critical buckling load is accomplished from the solution of allied linear eigenvalue problem. Influence of stacking sequence, span to thickness ratio, aspect ratio, load factor and boundary condition on critical buckling load and their corresponding mode shape is investigated. In addition, static deflection of MEE plate under the sinusoidal and the uniformly distributed load has been studied for different stacking sequences and boundary conditions.

Time-dependent Deformation Behaviour of Queenston Shale (퀸스톤 제일의 시간의존적 변형거동)

  • 이영남
    • Geotechnical Engineering
    • /
    • v.5 no.2
    • /
    • pp.57-77
    • /
    • 1989
  • This paper describes the design and construction aspects of time-dependent deformation test apparatus for slut.oiling rocks and presents the test results obtained using these apparatus. These tests are modified semi-confined swell test, swell test under uniaxial tension and swell test under biaxial stress. These apparatus measure the time.dependent deformations in three orthogonal directions of the test specimen under simplified field stress conditions. The test results obtained from these test apparatus for the last several years show that these apparatus have performed satisfactorily. The test results show that the time-dependent deformation behaviour of the Queenston shale is cross-anisotropic with higher swelling in the vertical direction (normal to bedding plane) than in horizontal direction (parallel to bedding plane) under free swell condition. The applied stress in one direction suppresses the swelling deformation in that direction as well as that in the orthogonal directions.

  • PDF

Stochastic Finite Element Analysis of Underground Rock Cavern Using Monte Carlo Simulation Techinque (몬테칼로 시뮬레이션기법을 이용한 지하암반동굴의 확률론적 유한요소해석)

  • 최규섭;심재구;정영수
    • The Journal of Engineering Geology
    • /
    • v.5 no.3
    • /
    • pp.301-308
    • /
    • 1995
  • In this study, a stochastic finite element method is proposed with a view to consider rock property variations in the analysis of structural behavior on underground caverns. Here, the Monte carlo simulation technique, which has been widely used in probabilistic applications in many engineering fields, is applied for the analysis of the effect rock property distribution. Using the newly developed computer program based on the above - mentioned method, the underground opening in biaxial stress field is analyzed considering the effect of material property variation.

  • PDF

Development of Bulge Testing System for Mechanical Properties Measurement of Thin Films : Elastic Modulus of Electrolytic Copper Film (박막의 기계적 물성 측정을 위한 벌지 시험 시스템 개발: 전해 동 박의 탄성 계수)

  • Kim, Dong-Iel;Huh, Yong-Hak;Kim, Dong-Jin;Kee, Chang-Doo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1807-1812
    • /
    • 2007
  • A bulge testing system was developed to measure mechanical properties of thin film materials. A bulge pressure test system for pressurizing the bulge window of the film and a micro out-of-plane ESPI(Electronic Speckle Pattern Interferometric) system for measuring deflection of the film were included in the testing system developed. For the out-of-plane ESPI system, whole field speckle fringe pattern, corresponding to the out-of-plane deflection of the bulged film, was 3-dimensionally visualized using 4-bucket phase shifting algorithm and least square phase unwrapping algorithm. The bulge pressure for loading and unloading was controlled at a constant rate. From the pressure-deflection curve measured by this testing system, ain-plane stress-strain curve could be determined. In this study, elastic modulus of an electrolytic copper film 18 ${\mu}m$ was determined. The modulus was calculated from determining the plain-strain biaxial elastic modulus at the respective unloading slopes of the stress-strain curve and for the Poisson's ratio of 0.34.

  • PDF

A novel refined shear deformation theory for the buckling analysis of thick isotropic plates

  • Fellah, M.;Draiche, Kada;Houar, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Saeed, Tareq;Alhodaly, Mohammed Sh.;Benguediab, Mohamed
    • Structural Engineering and Mechanics
    • /
    • v.69 no.3
    • /
    • pp.335-345
    • /
    • 2019
  • In present study, a novel refined hyperbolic shear deformation theory is proposed for the buckling analysis of thick isotropic plates. The new displacement field is constructed with only two unknowns, as against three or more in other higher order shear deformation theories. However, the hyperbolic sine function is assigned according to the shearing stress distribution across the plate thickness, and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using any shear correction factors. The equations of motion associated with the present theory are obtained using the principle of virtual work. The analytical solution of the buckling of simply supported plates subjected to uniaxial and biaxial loading conditions was obtained using the Navier method. The critical buckling load results for thick isotropic square plates are compared with various available results in the literature given by other theories. From the present analysis, it can be concluded that the proposed theory is accurate and efficient in predicting the buckling response of isotropic plates.

Nonlinear Analysis of Stress-strain for RC Panel Subjected to Shear (순수전단이 작용하는 RC Panel의 응력-변형률 비선형해석)

  • Cha, Young-Gyu;Kim, Hak-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.1
    • /
    • pp.175-181
    • /
    • 2010
  • The three truss models(equilibrium truss model, Mohr compatibility truss model, and the soften truss model) based on a rotating angle is called the rotating-angle model. The three rotating-angle models have a common weakness: they are incapable of predicting the so-called "contribution of concrete". To take into account this "contribution of concrete", the modern truss model(MCFT, STM) treats a cracked reinforced concrete element as a continuous material. By combining the equilibrium, compatibility, and the softened stress-strain relationship of concrete in biaxial state, MTM is capable of producing the nonlinear analysis of reinforced concrete structures composed of membrane element. In this paper, an efficient algorithm is proposed for the solution of proposed model incorporated with failure criteria. This algorithm is used to analyze the behavior of reinforced membrane element using the results of Hsu test.

Developing brittle transparent materials with 3D fractures and experimental study

  • Wang, Jing;Li, Shucai;Zhu, Weishen;Li, Liping
    • Steel and Composite Structures
    • /
    • v.22 no.2
    • /
    • pp.399-409
    • /
    • 2016
  • The fracture propagation mechanism and fractured rock mass failure mechanism were important research in geotechnical engineering field. Many failures and instability in geotechnical engineering were related on fractures propagation, coalescence and interaction in rock mass under the external force. Most of the current research were limited to two-dimensional for the brittleness and transparency of three-dimensional fracture materials couldn't meet the requirements of the experiment. New materials with good transparent and brittleness were developed by authors. The making method of multi fracture specimens were established and made molds that could be reused. The tension-compression ratio of the material reached above 1/6 in normal temperature. Uniaxial and biaxial loading tests of single and double fracture specimens were carried out. Four new fractures were not found in the experiment of two-dimensional fractures such as the fin shaped crack, wrapping wing crack and petal crack and anti-wing crack. The relationship between stress and strain of the specimens were studied. The specimens with the load had experienced four stages of deformation and the process of the fracture propagation was clearly seen in each stage. The expansion characteristics of the fractured specimens were more obvious than the previous research.