Browse > Article
http://dx.doi.org/10.12989/gae.2019.18.6.627

Effect of confining stress on representative elementary volume of jointed rock masses  

Wu, Na (State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology)
Liang, Zhengzhao (State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology)
Li, Yingchun (State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology)
Qian, Xikun (State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology)
Gong, Bin (State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology)
Publication Information
Geomechanics and Engineering / v.18, no.6, 2019 , pp. 627-638 More about this Journal
Abstract
Estimation of representative elementary volume (REV) of jointed rock masses is critical to predict the mechanical behavior of field-scale rock masses. The REV of jointed rock masses at site is strongly influenced by stress state. The paper proposed a method to systematically studied the influence of confining stress on the REV of jointed rock masses with various strengths (weak, medium and strong), which were sourced from the water inlet slope of Xiaowan Hydropower Station, China. A finite element method considering material heterogeneity was employed, a series of two-dimensional (2D) models was established based on the Monte-Carlo method and a lot of biaxial compressive tests were conducted. Numerical results showed that the REV of jointed rock masses presented a step-like reduction as the normalized confining stress increased. Confining stress weakened the size effect of jointed rock masses, indicating that the REV determined under uniaxial compression test can be reasonably taken as the REV of jointed rock masses under complexed in-situ stress environment.
Keywords
numerical simulation; confining stress; scale effect; representative elementary volume; jointed rock masses;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Pariseau W.G., Puri, S. and Schmelter, S.C. (2008), "A new model for effects of impersistent joint sets on rock slope stability", Int. J. Rock Mech. Min. Sci., 45(2), 122-131. https://doi.org/10.1016/j.ijrmms.2007.05.001.   DOI
2 Ribacchi, R. (2000), "Mechanical tests on pervasively jointed rock material: Insight into rock mass behavior", Rock Mech. Rock Eng., 33(4), 243-266. https://doi.org/10.1007/s006030070.   DOI
3 Sarfarazi, V.H.H. and Alireza, B.S. (2017), "The effect of compression load and rock bridge geometry on the shear mechanism of weak plane", Geomech. Eng., 13(3), 431-446. https://doi.org/10.12989/gae.2017.13.3.431.   DOI
4 Shemirani, A.B., Haeri, H., Sarfarazi, V. and Hedayat, A. (2017), "A review paper about experimental investigations on failure behaviour of non-persistent joint", Geomech. Eng., 13(4), 535-570. https://doi.org/10.12989/gae.2017.13.4.535.   DOI
5 Tang, C.A. (1997), "Numerical simulation of progressive rock failure and associated seismicity", Int. J. Rock Mech. Min. Sci., 34(2), 249-261. https://doi.org/10.1016/S0148-9062(96)00039-3.   DOI
6 Vazaios, I., Farahmand, K., Vlachopoulos, N. and Diederichs, M. S. (2018), "Effects of confinement on rock mass modulus: A synthetic rock mass modelling (SRM) study", J. Rock Mech. Geotech. Eng., 10(3), 436-456. https://doi.org/10.1016/j.jrmge.2018.01.002.   DOI
7 Wang, M., Kulatilake, P.H.S.W., Um, J. and Narvaiz, J. (2002), "Estimation of REV size and three-dimensional hydraulic conductivity tensor for a fractured rock mass through a single well packer test and discrete fracture fluid flow modeling", Int. J. Rock Mech. Min. Sci., 39(7), 887-904. https://doi.org/10.1016/S1365-1609(02)00067-9.   DOI
8 Wong, R.H.C., Tang, C.A., Chau, K.T. and Lin, P. (2002), "Splitting failure in brittle rocks containing pre-existing flaws under uniaxial compression", Eng. Fract. Mech., 69(17), 1853-1871. https://doi.org/10.1016/S0013-7944(02)00065-6.   DOI
9 Wang, X.G., Jia, Z.X., Zhang, F.M. and Li, X.Q. (2010), The Principle of Network Simulation of Rock Mass Structure and Its Engineering Application, China Water Conservancy and Hydropower Press, Beijing, China.
10 Wang, P.T., Yang, T.H., Xu, T., Cai, M.F. and Li, C.H. (2016), "Numerical analysis on scale effect of elasticity, strength and failure patterns of jointed rock masses", Geosci. J., 20(4), 539-549. https://doi.org/10.1007/s12303-015-0070-x.   DOI
11 Wu, Z., Fan, L., Liu, Q. and Ma, G. (2017), "Micro-mechanical modeling of the macro-mechanical response and fracture behavior of rock using the numerical manifold method", Eng. Geol., 225, 49-60. https://doi.org/10.1016/j.enggeo.2016.08.018.   DOI
12 Wu, N., Liang, Z.Z., Li, Y.C., Li, H., Li, W.R. and Zhang, M.L. (2019), "Stress-dependent anisotropy index of strength and deformability of jointed rock mass: Insights from a numerical study", Bull. Eng. Geol. Environ., 1-13. https://doi.org/10.1007/s10064-019-01483-5.
13 Xu, T., Ranjith, P.G., Wasantha, P.L.P., Zhao, J., Tang, C.A. and Zhu, W.C. (2013), "Influence of the geometry of partiallyspanning joints on mechanical properties of rock in uniaxial compression", Eng. Geol., 167, 134-147. https://doi.org/10.1016/j.enggeo.2013.10.011.   DOI
14 Yang, S.Q. and Jing, H.W. (2011), "Strength failure and crack coalescence behavior of brittle sandstone samples containing a single fissure under uniaxial compression", Int. J. Fract., 168(2), 227-250. https://doi.org/10.1007/s10704-010-9576-4.   DOI
15 Yang, J.P., Chen, W.Z., Yang, D.S. and Yuan, J.Q. (2015a), "Numerical determination of strength and deformability of fractured rock mass by FEM modeling", Comput. Geotech., 64, 20-31. https://doi.org/10.1016/j.compgeo.2014.10.011.   DOI
16 Bieniawski, Z.T. (1978), "Determining rock mass deformability: Experience from case histories", Int. J. Rock Mech. Min. Sci., 15(5), 237-247. https://doi.org/10.1016/0148-9062(78)90956-7.   DOI
17 Barton, N. (2002), "Some new Q-value correlations to assist in site characterization and tunnel design", Int. J. Rock Mech. Min. Sci., 39(2), 185-216. https://doi.org/10.1016/S1365-1609(02)00011-4.   DOI
18 Baghbanan, A. (2008), "Scale and stress effects on hydromechanical properties of fractured rock masses", Ph.D. Dissertation, KTH Royal Institute of Technology, Stockholm, Sweden.
19 Bidgoli, M.N. and Jing, L. (2014), "Anisotropy of strength and deformability of fractured rocks", J. Rock Mech. Geotech. Eng., 6(2), 156-164. https://doi.org/10.1016/j.jrmge.2014.01.009.   DOI
20 Bandpey, A.K., Shahriar, K., Sharifzadeh, M. and Marefvand, P. (2018), "Validation of 3D discrete fracture network model focusing on areal sampling methods-a case study on the powerhouse cavern of Rudbar Lorestan pumped storage power plant, Iran", Geomech. Eng., 16(1), 21-34. https://doi.org/10.12989/gae.2018.16.1.021.   DOI
21 Cuisiat, F.D. and Haimson, B.C. (1992), "Scale effects in rock mass stress measurements", Int. J. Rock Mech. Min. Sci., 29(2), 99-117. https://doi.org/10.1016/0148-9062(92)92121-R.   DOI
22 Esmaieli, K., Hadjigeorgiou, J. and Grenon, M. (2010), "Estimating geometrical and mechanical REV based on synthetic rock mass models at Brunswick Mine", Int. J. Rock Mech. Min. Sci., 47(6), 915-926. https://doi.org/10.1016/j.ijrmms.2010.05.010.   DOI
23 Amadei, B. and Goodman, R. (1981), "A 3-D constitutive relation for fractured rock masses", Proceedings of the International Symposium on the Mechanical Behavior of Structure Media, Ottawa, Canada, October.
24 Bear, J. (1972), "Dynamics of fluids in porous media", Eng. Geol., 7(2), 174-175. https://doi.org/10.1016/0013-7952(73)90047-1.   DOI
25 Yang, X.X., Kulatilake, P.H.S.W., Jing, H.W. and Yang, S.Q. (2015b), "Numerical simulation of a jointed rock block mechanical behavior adjacent to an underground excavation and comparison with physical model test results", Tunn. Undergr. Sp. Technol., 50, 129-142. https://doi.org/10.1016/j.tust.2015.07.006.   DOI
26 Yu, Q.L., Zhu, W.C., Tang, C.A. and Yang, T.H. (2014), "Impact of rock microstructures on failure processes-Numerical study based on DIP technique", Geomech. Eng., 7(4), 375-401. https://doi.org/10.12989/gae.2014.7.4.375.   DOI
27 Zhang, W., Chen, J.P., Chen, H.E., Xu, D.Z. and Li, Y. (2013), "Determination of RVE with consideration of the spatial effect", Int. J. Rock Mech. Min. Sci., 61(7), 154-160. https://doi.org/10.1016/j.ijrmms.2013.02.013.   DOI
28 Zhou, J.R., Wei, J., Yang, T.H., Zhu, W.C., Li, L.C. and Zhang, P.H. (2018), "Damage analysis of rock mass coupling joints, water and microseismicity", Tunn. Undergr. Sp. Technol., 71, 366-381. https://doi.org/10.1016/j.tust.2017.09.006.   DOI
29 Cai, M. (2008), "Influence of intermediate principal stress on rock fracturing and strength near excavation boundaries-insight from numerical modeling", Int. J. Rock Mech. Min. Sci., 45(5), 763-772. https://doi.org/ 10.1016/0148-9062(78)90956-7.   DOI
30 Darlington, W.J., Ranjith, P.G. and Choi S.K. (2011), "The effect of specimen size on strength and other properties in laboratory testing of rock and rock-like cementitious brittle materials", Rock Mech. Rock. Eng., 44(5), 513-529. https://doi.org/10.1007/s00603-011-0161-6.   DOI
31 Gao, M., Liang, Z.Z, Jia, S.P, Li, Y.C and Yang, X.X. (2019), "An equivalent anchoring method for anisotropic rock masses in underground tunnelling", Tunn. Undergr. Sp. Technol., 85, 294-306. https://doi.org/10.1016/j.tust.2018.12.017.   DOI
32 Hill R.j. (1963), "Elastic properties of reinforced solids: Some theoretical principles", J. Mech. Phys. Solids, 11(5), 357-372. https://doi.org/ 10.1016/0022-5096(63)90036-X.   DOI
33 Heuze, F.E. (1980), "Scale effects in the determination of rock mass strength and deformability", Rock Mech. Rock. Eng., 12(3-4), 167-192. https://doi.org/10.1007/BF01251024.   DOI
34 Hoek, E. (1983), "Underground excavations in rock", Eng. Geol., 19(3), 244-246. https://doi.org/10.1016/0013-7952(83)90009-1.   DOI
35 Khani, A., Baghbanan, A. and Hashemolhosseini, H. (2013), "Numerical investigation of the effect of fracture intensity on deformability and REV of fractured rock masses", Int. J. Rock Mech. Min. Sci., 63, 104-112. https://doi.org/10.1016/j.ijrmms.2013.08.006.   DOI
36 Huang, N., Liu, R., Jiang, Y., Cheng, Y., and Li, B. (2019), "Shearflow coupling characteristics of a three-dimensional discrete fracture network-fault model considering stress-induced aperture variations", J. Hydrol., 571, 416-424. https://doi.org/10.1016/j.jhydrol.2019.01.068.   DOI
37 Kulatilake, P.H.S.W. (1985), "Estimating elastic constants and strength of discontinuous rock", J. Geotech. Eng., 111(7), 847-864. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:7(847).   DOI
38 Krauland, N., Soder, P. and Agmalm, G. (1989), "Determination of rock mass strength by rock mass classification-some experience and questions from boliden mines", Int. J. Rock Mech. Min. Sci., 26(1), 115-123. https://doi.org/10.1016/0148-9062(89)90531-7.   DOI
39 Long, J.C.S., Remer, J.S., Wilson, C.R. and Witherspoon, P.A. (1982), "Porous media equivalents for networks of discontinuous fractures", Water Resour. Res., 18(3), 645-658. https://doi.org/10.1029/wr018i003p00645.   DOI
40 Li, G. and Tang, C.A. (2015), "A statistical meso-damage mechanical method for modeling trans-scale progressive failure process of rock", Int. J. Rock Mech. Min. Sci., 74, 133-150. https://doi.org/10.1016/j.ijrmms.2014.12.006.   DOI
41 Lei, Q., Latham, J.P., Xiang, J. and Tsang, C.F. (2017), "Role of natural fractures in damage evolution around tunnel excavation in fractured rocks", Eng. Geol., 231, 100-113. https://doi.org/10.1016/j.enggeo.2017.10.013.   DOI
42 Oda, M. (1988), "A method for evaluating the representative elementary volume based on joint survey of rock masses", Can. Geotech. J., 25(3), 440-447. https://doi.org/10.1139/t88-049.   DOI
43 Laghaei, M., Baghbanan, A., Hashemolhosseini, H. and Dehghanipoodeh, M. (2018), "Numerical determination of deformability and strength of 3D fractured rock mass", Int. J. Rock Mech. Min. Sci., 110, 246-256. https://doi.org/10.1016/j.ijrmms.2018.07.015.   DOI
44 Li, Y.C., Sun, S.Y. and Tang, C.A. (2019), "Analytical prediction of the shear behaviour of rock joints with quantified waviness and unevenness through wavelet analysis", Rock Mech. Rock Eng., 1-13. https://doi.org/10.1007/s00603-019-01817-5.
45 Neuman, S.P. (1987), "Stochastic continuum representation of fractured rock permeability as an alternative to the RVE and fracture network concepts", Proceedings of the 28th US Symposium of Rock Mechanics, Tucson, U.S.A., July.
46 Oh, J., Moon, T., Canbulat, I. and Moon, J.S. (2019), "Design of initial support required for excavation of underground cavern and shaft from numerical analysis", Geomech. Eng., 17(6), 573-581. https://doi.org/10.12989/gae.2019.17.6.573.   DOI
47 Pouya, A. and Ghoreychi, M. (1998), "Determination of rock mass strength properties by homogenization", Int. J. Numer. Anal. Meth. Geomech., 25(13), 1285-1303. https://doi.org/10.1007/978-3-7091-2512-0-68.   DOI
48 Prudencio, M. and Jan, M.V.S. (2007), "Strength and failure modes of rock mass models with non-persistent joints", Int. J. Rock Mech. Min. Sci., 44(6), 890-902. https://doi.org/10.1016/j.ijrmms.2007.01.005.   DOI