• Title/Summary/Keyword: BiTe

Search Result 311, Processing Time 0.029 seconds

Susceptibility-Contrast-Enhanced MR Venography of Cat Brain Using Tailored RF Pulse at High Magnetic Field of 4.7 Tesla Superconducting Magnet (4.7T 고자장 초전도 자석에서 Tailored RF를 이용한 고양이 뇌의 자화율 강조영상법에 의한 자기공명혈관 조영술)

  • Moon, Chi-Woong;Kim, Sang-Tae;Lee, Dae-Geun;Im, Tae-Hwan;No, Yong-Man;Cho, Jang-Hee;Lee, Yoon
    • Progress in Medical Physics
    • /
    • v.5 no.1
    • /
    • pp.55-66
    • /
    • 1994
  • After proving home-made imaging pulse sequences including tailored RF pulse by phantom, susceptibility-contrast-enhanced MR venograms of cat brain were obtained using tailored RF gradient-echo(TRGE) method. Sagittal MR imaging of the cat brain obtained by TRGE technique shows several veins, for example, dorsal sagittal sinus, straight sinus, vein of corpus callosum and internal cerebral vein, etc., compared with cats anatomical figure. Tailored RF waveform was generated by PASCAL language in ASPECT 3000 computer(Switzland, Bruker). Rectangular-shaped slice profile with bi-linear ramp function as phase distribution in the slice, at which maximum value was 2$\pi$, was fourier transformed to make tailored RF pulse. Experimental MR imaging parameters were TR/TE=205/10 msec, slice thickness TH=7mm, maxtrix size=256$\times$256, in-plane resolution=0.62$\times$0.31mm$^2$, and field of view(FOV)=8cm for both conventional gradient-echo(GE) imaging and TRGE imaging techniques.

  • PDF

A Basic Experimental Study on the Heat Energy Harvesting for Green SOC (녹색 사회기반시설의 열 에너지 하베스팅을 위한 기초실험 연구)

  • Jo, Byung-Wan;Lee, Duk-Hee;Lee, Dong-Yoon;Kim, Yoon-Ki
    • International Journal of Highway Engineering
    • /
    • v.12 no.3
    • /
    • pp.93-101
    • /
    • 2010
  • As the number of indispensable needs of clean energy increases due to the green new deal revolution, the possibility of heat energy harvesting from the surrounding infrastructures such as a railroad or highway was verified. In order to find more efficient usage of a heat source, the possibility of transforming heat into electricity were confirmed using Bi-Te type thermoelectric element, and electrical quality were tested with experiments of different heat source and environmental change in the surrounding infrastructures. After careful experiments, the possibility of collecting thermal energy and findings of the heat temperature change in infrastructrue are verified with a result of obtaining almost 20.82W in 70 celcius($^{\circ}C$) temperature differences and $1m^2$ surface area. Consequently, the ratio of heat temperatiure change and transforming surface area is the most crucial factor in the harvesting heat energy, and reducing thermal loss and improving thermal convection as well as transformation efficiency of thermoelectric element is required to get more efficient and durable generation.

단일 나노선의 열전물성 측정용 열전 MEMS 플랫폼 개발

  • Sin, Ho-Seon;Jeon, Seong-Gi;Lee, U;Yu, Jin;Song, Jae-Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.589-589
    • /
    • 2013
  • 열전재료는 제백효과(Seebeck effect)에 의해 폐열을 전기에너지로 변환시킬 수 있는 소재로서, 기존의 열전재료가 나노수준으로 크기가 줄어들 경우 양자제한효과에 의한 제백계수의 증가와 표면산란에 의한 열전도도 감소로 인해 벌크재료에 비해 높은 에너지변환효율을 가질 수 있을 것으로 기대되고 있다. 에너지 변환효율은 열전성능계수인 $ZT=S2{\sigma}T/k$로 정의되며 따라서 우수한 열전재료는 높은 제백계수 S와, 높은 전기전도도 ${\sigma}$ 및 낮은 열전도도 k를 갖는 재료여야 한다. 그러나 나노소재는 낮은 측정 신호와 측정소자준비가 어려워 기존 측정시스템으로는 원활한 측정이 어렵다. 특히 열전도도의 경우 나노소재 자체의 열전도 보다 나노소재 주변 구조에 의한 열전도가 큰 경우 정확한 열전도도 평가가 어렵다. 본 연구에서는 나노선의 열전물성을 평가하기 위해 MEMS기반 기술을 이용하여 열전물성 측정플랫폼(MEMS-based thermoelectric measurement platform, MTMP)을 개발하였다. 개발 된 MTMP는 얇은 Si nitride 브릿지들이 허공에 떠 있는 두 개의 아일랜드 형태의 멤브레인 구조를 지지하는 형태로 제작되었으며, 한 쪽 아일랜드구조 위에는 나노히터가 있어 두 아일랜드 구조 사이에 온도구배를 만들 수 있도록 제작되었다. 제작된 멤브레인을 이용하여 전기화학적인 방법으로 합성한 Bi-Te계 나노선의 S, ${\sigma}$ 그리고 k를 측정하였다. 측정결과 화학양론적 미세구조를 갖는 단결정 Bi2Te3 나노선은 300 K의 측정온도에서 $S=-57{\mu}V/K$, ${\sigma}=3.9{\times}10^5S/m$, k=2.0 W/m-K의 측정 값으로 ZT=0.19였다. 본 연구에서 개발한 MTMP는 나노선 뿐만 아니라 나노플레이트의 열전 측정에도 활용할 수 있는 구조로서 나노열전소재 측정에 널리 활용될 수 있다.

  • PDF

Self-Adaptive Smart Grid with Photovoltaics using AiTES (AiTES를 사용한 태양광 발전이 포함된 자가 적응적 스마트 그리드)

  • Park, Sung-sik;Park, Young-beom
    • Journal of Platform Technology
    • /
    • v.6 no.3
    • /
    • pp.38-46
    • /
    • 2018
  • Smart Grid is an intelligent power grid for efficiently producing and consuming electricity through bi-directional communication between power producers and consumers. As renewable energy develops, the share of renewable energy in the smart grid is increasing. Renewable energy has a problem that it differs from existing power generation methods that can predict and control power generation because the power generation changes in real time. Applying a self-adaptative framework to the Smart Grid will enable efficient operation of the Smart Grid by adapting to the amount of renewable energy power generated in real time. In this paper, we assume that smart villages equipped with photovoltaic power generation facilities are installed, and apply the self-adaptative framework, AiTES, to show that smart grid can be efficiently operated through self adaptation framework.

EFFECT OF PARAMAGNETIC Co$_{67}$Cr$_{33}$ UNDERLAYER ON CRYSTALLOGRAPHIC AND MAGNETIC CHARACTERISTICS OF Co-Cr-Ta LAYERS IN PERPENDICULAR MAGNETIC RECORDING MEDIA

  • Kim, Kyung-Hwan;Nakagawa, Shigeki;Takayama, Seiryu;Naoe, Masahiko
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.6
    • /
    • pp.847-850
    • /
    • 1996
  • The bi-layered films composed of Co-Cr-Ta layers and paramagnetic $Co_{67}Cr_{33}$ underlayer were deposited by suing Facing Targets Sputtering(FTS). The effects of $Co_{67}Cr_{33}$ underlayer on the crystallographic and magnetic characteristics of the Co-Cr-Ta layer deposited on the underlayer was investigated. The diffraction intensity $I_{p(002)}$ of Co-Cr-Ta layers on the $Co_{67}Cr_{33}$ layer was stronger than that of single layer and Co-Cr-Ta/Ti double layer. Therefore, the crystallinity of Co-Cr-Ta layer was imporved by the $Co_{67}Cr_{33}$ underlayer rather than Ti ones. However, te coercivity H$_{c\bot}$ of Co-Cr-Ta layers deposited on $Co_{67}Cr_{33}$ underlayer was as low as 250 Oe even at substrate temperature of $220^{\circ}C$. This H$_{c\bot}$ decrease seems to be attributed to the effect of the $Co_{67}Cr_{33}$ underlayer as well as interval time between deposition of the underlayer and the Co-Cr-Ta layer.

  • PDF

Effect of Hydrogen Reduction Treatment on Room-Temperature Thermoelectric Performance of p-type Thermoelectric Powders (P형 열전분말의 수소환원처리가 상온열전특성에 미치는 영향)

  • Kim, Kyung-Tae;Jang, Kyeong-Mi;Ha, Gook-Hyun
    • Journal of Powder Materials
    • /
    • v.17 no.2
    • /
    • pp.136-141
    • /
    • 2010
  • Bismuth-telluride based $(Bi_{0.2}Sb_{0.8})_2Te_3$ thermoelectric powders were fabricated by two-step planetary milling process which produces bimodal size distribution ranging $400\;nm\;{\sim}\;2\;{\mu}m$. The powders were reduced in hydrogen atmosphere to minimize oxygen contents which cause degradation of thermoelectric performance by decreasing electrical conductivity. Oxygen contents were decreased from 0.48% to 0.25% by the reduction process. In this study, both the as-synthesized and the reduced powders were consolidated by the spark plasma sintering process at $350^{\circ}C$ for 10 min at the heating rate of $100^{\circ}C/min$ and then their thermoelectric properties were investigated. The sintered samples using the reduced p-type thermoelectric powders show 15% lower specific electrical resistivity ($0.8\;m{\Omega}{\cdot}cm$) than those of the as-synthesized powders while Seebeck coefficient and thermal conductivity do not change a lot. The results confirmed that ZT value of thermoelectric performance at room temperature was improved by 15% due to high electric conductivity caused by the controlled oxygen contents present at bismuth telluride materials.

Gas Sensing Properties of Powder Prepared from Waste Thermoelectric Devices by Wet Reduction Process

  • So, Hyeongsub;Im, Dong-Ha;Jung, Hyunsung;Lee, Kun-Jae
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.1
    • /
    • pp.90-93
    • /
    • 2018
  • In this study, n-type $Bi_2Te_3$ in thermoelectric scrap is recovered through a wet reduction process. The recovered powder (tellurium) is grafted onto gas sensor in a new application that is not a thermoelectric device. Bismuth-rich powder is prepared by adding hydrazine when pH of the solution is brought to 13 using NaOH. The pH of the filtered solution was reduced using $HNO_3$, and then hydrazine was added to perform the re-reduction reaction. The tellurium-rich powder can be obtained through this reaction. The elemental analysis for these powders is confirmed by energy dispersive X-ray spectroscopy (EDS) analysis ; the successful separation of bismuth and tellurium is confirmed. Separated tellurium powder is mixed with DMF solvent and ethyl cellulose binder to confirm gas sensing properties. The tellurium paste was exposed in $NO_x$ atmosphere and exhibited a rapid reaction rate and recovery rate of less than 3 minutes for the gas.

Current Status of Nanostructured Thermoelectric Materials for Mid-High Temperature Applications (나노구조 기반 중·고온용 열전소재 연구 동향)

  • Nam, Woo Hyun;Shin, Weon Ho;Cho, Jung Young;Seo, Won-Seon
    • Ceramist
    • /
    • v.22 no.2
    • /
    • pp.133-145
    • /
    • 2019
  • Thermoelectric energy conversion has attracted much attention because it can convert heat into electric power directly through solid state device and vice versa. Current research is aimed at increasing the thermoelectric figure of merit (ZT ) by improving the power factor and reducing the thermal conductivity. Although there have been significant progresses in increasing ZT of material systems composed of Bi, Te, Ge, Pb, and etc. over the last few decades, their relatively high cost, toxicity, and the scarcity have hindered further development of thermoelectrics to expand practical applications. In this paper, we review the current status of research in the fields of nanostructured thermoelectric materials with eco-friendly and low cost elements, such as skutterudites and oxides, for mid-high temperature applications, highlighting the strategies to improve thermoelectric performance.

Analytical and multicoupled methods for optimal steady-state thermoelectric solutions

  • Moreno-Navarro, Pablo;Perez-Aparicio, Jose L.;Gomez-Hernandez, J.J.
    • Coupled systems mechanics
    • /
    • v.11 no.2
    • /
    • pp.151-166
    • /
    • 2022
  • Peltier cells have low efficiency, but they are becoming attractive alternatives for affordable and environmentally clean cooling. In this line, the current article develops closed-form and semianalytical solutions to improve the temperature distribution of Bi2Te3 thermoelements. From the distribution, the main objective of the current work-the optimal electric intensity to maximize cooling-is inferred. The general one-dimensional differential coupled equation is integrated for linear and quadratic geometry of thermoelements, under temperature constant properties. For a general shape, a piece-wise solution based on heat flux continuity among virtual layers gives accurate analytical solutions. For variable properties, another piece-wise solution is developed but solved iteratively. Taking advantage of the formulae, the optimal intensity is directly derived with a minimal computational cost; its value will be of utility for more advanced designs. Finally, a parametric study including straight, two linear, barrel, hourglass and vase geometries is presented, drawing conclusions on how the shape of the thermoelement affects the coupled phenomena. A specially developed coupled and non-linear finite element research code is run taking into account all the materials of the cell and using symmetries and repetitions. These accurate results are used to validate the analytical ones.

First-principles Study on the Magnetic Properties of Gd doped Bithmuth-Telluride (Gd 도핑된 비스무스 텔루라이드의 자기적 성질에 대한 제일원리 계산 연구)

  • Van Quang, Tran;Kim, Miyoung
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.2
    • /
    • pp.39-44
    • /
    • 2016
  • Determination of the structural, electronic, and magnetic properties of the magnetically doped bismuth-telluride alloys are drawing lots of interest in the fields of the thermoelectric application as well as the research on magnetic interaction and topological insulator. In this study, we performed the first-principles electronic structure calculations within the density functional theory for the Gd doped bismuth-tellurides in order to study its magnetic properties and magnetic phase stability. All-electron FLAPW (full-potential linearized augmented plane-wave) method is employed and the exchange correlation potentials of electrons are treated within the generalized gradient approximation. In order to describe the localized f-electrons of Gd properly, the Hubbard +U term and the spin-orbit coupling of the valence electrons are included in the second variational way. The results show that while the Gd bulk prefers a ferromagnetic phase, the total energy differences between the ferromagnetic and the antiferromagnetic phases of the Gd doped bismuth-telluride alloys are about ~1meV/Gd, indicating that the stable magnetic phase may be changed sensitively depending on the structural change such as defects or strains.