DOI QR코드

DOI QR Code

Current Status of Nanostructured Thermoelectric Materials for Mid-High Temperature Applications

나노구조 기반 중·고온용 열전소재 연구 동향

  • Nam, Woo Hyun (Energy and Environment Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Shin, Weon Ho (Energy and Environment Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Cho, Jung Young (Energy and Environment Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Seo, Won-Seon (Energy and Environment Division, Korea Institute of Ceramic Engineering and Technology)
  • 남우현 (한국세라믹기술원 에너지환경본부) ;
  • 신원호 (한국세라믹기술원 에너지환경본부) ;
  • 조중영 (한국세라믹기술원 에너지환경본부) ;
  • 서원선 (한국세라믹기술원 에너지환경본부)
  • Received : 2019.06.07
  • Accepted : 2019.06.17
  • Published : 2019.06.30

Abstract

Thermoelectric energy conversion has attracted much attention because it can convert heat into electric power directly through solid state device and vice versa. Current research is aimed at increasing the thermoelectric figure of merit (ZT ) by improving the power factor and reducing the thermal conductivity. Although there have been significant progresses in increasing ZT of material systems composed of Bi, Te, Ge, Pb, and etc. over the last few decades, their relatively high cost, toxicity, and the scarcity have hindered further development of thermoelectrics to expand practical applications. In this paper, we review the current status of research in the fields of nanostructured thermoelectric materials with eco-friendly and low cost elements, such as skutterudites and oxides, for mid-high temperature applications, highlighting the strategies to improve thermoelectric performance.

Keywords

References

  1. J.-F. Li, W.-S. Liu, L.-D. Zhao and M. Zhou,"Highperformance nanostructured thermoelectric materials" NPG Asia Mater., 2 152-8 (2010). https://doi.org/10.1038/asiamat.2010.138
  2. J. Snyder and E. S. Toberer, "Complex thermoelectric materials" Nat. Mater., 7 105-14 (2008). https://doi.org/10.1038/nmat2090
  3. S. Lee, J. A. Bock, S. Trolier-McKinstry, and C. A. Randall, "Ferroelectric-thermoelectricity and Mott transition of ferroelectric oxides with high electronic conductivity" J. Euro. Ceram. Soc., 32 3971-88 (2012). https://doi.org/10.1016/j.jeurceramsoc.2012.06.007
  4. G. A. Slack, "CRC Handbook of Thermoelectric"pp. 407, CRC Press, Boca Raton, 1995.
  5. M. Rull-Bravo, A. Moure, J. F. Fernandez, and M. Martin-Gonzalez, "Skutterudites as thermoelectric materials: revisited" RSC Adv., 5 41653-67 (2015). https://doi.org/10.1039/C5RA03942H
  6. W. Zhao, P. Wei, Q. Zhang, H. Peng, W. Zhu, D. Tang, J. Yu, H. Zhou, Z. Liu, X. Mu, D. He, J. Li, C. Wang, X. Tang, and J. Yang, "Multi-localization transport behaviour in bulk termoelectric materials" Nat. Commun., 6 6197 (2015). https://doi.org/10.1038/ncomms7197
  7. S. Wang, J. R. Salvador, J. Yang, P. Wei, B. Duan, and J. Yang, " High-performance n-type $Yb_xCo_4Sb_{12}$: from partially filled skutterudites towards composite thermoelectrics" NPG Asia Mater., 8 e285 (2016). https://doi.org/10.1038/am.2016.77
  8. X. Shi, J. Yang, J. R. Salvador, M. Chi, J. Y. Cho, H. Wang, S. Bai, J. Yang, W. Zhang, and L. Chen, "Multiple-Filled Skutterudites: High Thermoelectric Figure of Merit through Separately Optimizing Electrical and Thermal Transports" J. Am. Chem. Soc., 133 7837-46 (2011). https://doi.org/10.1021/ja111199y
  9. L. Fu, J. Yang, J. Peng, Q. Jiang, Y. Xiao, Y. Luo, D. Zhang, Z. Zhou, M. Zhang, Y. Cheng, and F. Cheng, "Enhancement of Thermoelectric Properties of Yb-filled Skutterudites by Ni Induced "Core-shell Structure" J. Mater. Chem. A, 3 1010-6 (2015). https://doi.org/10.1039/C4TA05083E
  10. H. Li, X. Su, X. Tang, Q. Zhang, C. Uher, G. J. Snyder, and U. Aydemir, "Grain boundary engineering with nano-scale InSb producing high performance $In_xCe_yCo_4Sb_{12+z}$ skutterudite thermoelectrics" J. Materiomics, 3 273-9 (2017). https://doi.org/10.1016/j.jmat.2017.07.003
  11. W. Zhao, Z. Liu, Z. Sun, Q. Zhang, P. Wei, X Mu, H. Zhou, C. Li, S. Ma, D. He, P. Ji, W. Zhu, X. Nie, X. Su, X. Tang, B. Shen, X. Dong, J. Yang, Y. Liu, and J. Shi, "Superparamagnetic enhancement of thermoelectric performance" Nature, 549 247-51 (2017). https://doi.org/10.1038/nature23667
  12. P.-A. Zong, X, Chen, Y. Zhu, Z. Liu, Y. Zeng, and L. Chen,"Construction of a 3D-rGO networkwrapping architecture in a YbyCo4Sb12/rGO composite for enhancing the thermoelectric performance" J. Mater. Chem. A, 3 8643-9 (2015). https://doi.org/10.1039/C5TA01594D
  13. P.-A. Zong, R. Hanus, M. Dylla, Y. Tang, J. Liao, Q. Zhang, G. J. Snyder, and L. Chen,"Skutterudite with graphene-modified grain-boundary complexion enhances zT enabling high-efficiency thermoelectric device" Energy Environ. Sci., 10 183-91 (2017). https://doi.org/10.1039/C6EE02467J
  14. S. Yadav, S. Chaudhary, and D. K. Pandya, "Incorporation of $MoS_2$ nanosheets in $CoSb_3$ matrix as an efficient novel strategy to enhance its thermoelectric performance" Appl. Surf, Sci., 435 1265-72 (2018). https://doi.org/10.1016/j.apsusc.2017.11.262
  15. F. Qiu, J. Yang, R. H. Liu, X. Shi, X. Y. Huang, G. J. Snyder, W. Zhang, and L. D. Chen, "Hightemperature electrical and thermal transport properties of fully filled skutterudites $RFe_4Sb_{12}$ (R = Ca, Sr, Ba, La, Ce, Pr, Nd, Eu, and Yb)" J. Appl. D Phys., 109 063713 (2011). https://doi.org/10.1063/1.3553842
  16. X. Meng, Y. Liu, B. Cui, D. Qin, J. Cao, W. Liu, Z. Liu, W. Cai, and J. Sui, "High thermoelectric performance of single phase p-type cerium-filled skutterudites by dislocation engineering" J. Mater. Chem. A, 6 20128-37 (2018). https://doi.org/10.1039/c8ta07445c
  17. R. C. Mallik, J.-Y. Jung, S.-C. Ur, and I.-H. Kim, "Thermoelectric Properties of $In_zCo_4Sb_{12}$ Skutterudites" Met. Mater. Int., 14 223-8 (2008). https://doi.org/10.3365/met.mat.2008.04.223
  18. J.-Y. Jung, K.-H. Park, and I.-H. Kim, "Thermoelectric and Transport Properties of In-filled and Ni-doped $CoSb_3$ Skutterudites" J. Korean Phys. Soc., 57 773-7 (2010). https://doi.org/10.3938/jkps.57.773
  19. J.-K. Lee, S.-M. Choi, W.-S. Seo, D.-I. Cheong, and I.-H. Kim, "Determination of the Thermoelectric Properties in Filled-Skutterudite Systems by Controlling the Process Variables" Jpn. J. Appl. Phys., 51 09ML02 (2012). https://doi.org/10.7567/JJAP.51.09ML02
  20. J.-K. Lee, S.-M. Choi, W.-S. Seo, Y.-S. Lim, H.-L. Lee, and I.-H. Kim, "Thermoelectric properties of Spark Plasma Sintered $In_xYb_yLa_{0.3-x-y}Co_4Sb_{12}$ skutterudite system" Renew. Energ., 42 36-40 (2012). https://doi.org/10.1016/j.renene.2011.09.028
  21. S.-Y. Kim, S.-M. Choi, W.-S. Seo, Y. S. Lim, S. Lee, I.-H. Kim, and H. K. Cho, "An Optimization of Composition Ratio among Triple-Filled Atoms in $In_{0.3-x-y}Ba_xCe_yCo_4Sb_{12}$ System" J. Nanomater., 2013 973060 (2013).
  22. K.-H. Park, W.-S. Seo, D.-K. Shin, and I.-H. Kim, "Thermoelectric Properties of Yb-filled $CoSb_3$ Skutterudites" J. Korean Phys. Soc., 65 491-5 (2014). https://doi.org/10.3938/jkps.65.491
  23. D.-K. Shin and I.-H. Kim, "Preparation and Thermoelectric Properties of p-Type $Pr_zFe_4-xCo_xSb_{12}$ Skutterudites" J. Korean Phys. Soc., 65 2071-6 (2014). https://doi.org/10.3938/jkps.65.2071
  24. G.-S. Joo, D.-K. Shin, and I.-H. Kim, "Synthesis and Thermoelectric Properties of p-Type Double-Filled $Ce_{1-z}Yb_zFe_{4-x}Co_xSb_{12}$ Skutterudites" J. Electron. Mater., 45 1251-6 (2016). https://doi.org/10.1007/s11664-015-3984-1
  25. D.-K. Shin and I.-H. Kim, "Electronic Transport and Thermoelectric Properties of p-Type $Nd_zFe_{4-x}Co_xSb_{12}$ Skutterudites" J. Electron. Mater., 45 1234-9 (2016). https://doi.org/10.1007/s11664-015-3967-2
  26. K.-M. Song, D.-K. Shin, and I.-H. Kim, "Thermoelectric Properties of p-Type $La_{1-z}Pr_zFe_{4-x}Co_xSb_{12}$ Skutterudites" J. Electron. Mater., 45 1227-33 (2016). https://doi.org/10.1007/s11664-015-3952-9
  27. K.-M. Song, D.-K. Shin, K.-W. Jang, S.-M. Choi, S. Lee, W.-S. Seo, and I.-H. Kim, "Synthesis and Thermoelectric Properties of $Ce_{1-z}Pr_zFe_{4-x}Co_xSb_{12}$ Skutterudites" J. Electron. Mater., 46 2634-9 (2017). https://doi.org/10.1007/s11664-016-4847-0
  28. D.-K. Shin and I.-H. Kim, "Thermoelectric Properties of Partially Double-filled $(Pr_{1-z}Yb_z)_yFe_{4-x}Co_xSb_{12}$ Skutterudites" J. Korean Phys. Soc., 70 591-7 (2017). https://doi.org/10.3938/jkps.70.591
  29. D.-K. Shin, K.-W. Jang, S.-M. Choi, S. Lee, W.-S. Sep, I.-H. Kim, "Charge Transport and Thermoelectric Properties of $(Nd_{1-z}Yb_z)_yFe_{4-x}Co_xSb_{12}$ Skutterudites" J. Electron. Mater., 47 3143-51 (2018). https://doi.org/10.1007/s11664-017-5869-y
  30. Y.-E. Cha and I.-H. Kim, "Thermoelectric Properties of Partially Double-filled $(Ce_{1-z}Nd_z)_yFe_{4-x}Co_xSb_{12}$ Skutterudites" Korean J. Met. Mater., 56 465-71 (2018). https://doi.org/10.3365/KJMM.2018.56.6.465
  31. S. Lee, K. H. Lee, Y.-M. Kim, H. S. Kim, G. J. Snyder, S. Baik, S. W. Kim, "Simple and efficient synthesis of nanograin structured single phase filled skutterudite for high thermoelectric performance" Acta Mater., 142 8-17 (2018). https://doi.org/10.1016/j.actamat.2017.09.044
  32. M. Ohtaki, T. Tsubota, K. Eguchi, and H. Arai, "High-temperature thermoelectric properties of $(Zn_{1-x}Al_x)O$" J. Appl. Phys., 79 1816-18 (1996). https://doi.org/10.1063/1.360976
  33. H. Ohta, W.-S. Seo, and K. Koumoto, "Thermoelectric Properties of Homologous Compounds in the $ZnOIn_2O_3$ System" J. Am. Ceram. Soc., 79 2193-6 (1996). https://doi.org/10.1111/j.1151-2916.1996.tb08958.x
  34. Y. Kinemuchi,. H. Nakano, M. Mikami, K. Kobayashi, K. Watari, and Y. Hotta, "Enhanced boundaryscattering of electrons and phonons in nanograined zinc oxide" J. Appl. Phys., 108 053721 (2010). https://doi.org/10.1063/1.3475650
  35. P. Jood, R. J. Mehta, Y. Zhang, G. Peleckis, X. Wang, R. W. Siegel, T. Borca-Tasciuc, S. X. Dou, and G. Ramanath, "Al-Doped Zinc Oxide Nanocomposites with Enhanced Thermoelectric Properties" Nano Lett., 11 4337-42 (2011). https://doi.org/10.1021/nl202439h
  36. D.-B. Zhang, H.-Z. Li, B.-P. Zhang, D.-D. Liang, and M. Xia, "Hybrid-structured ZnO thermoelectric materials with high carrier mobility and reduced thermal conductivity" RSC Adv., 7 10855-64 (2017). https://doi.org/10.1039/C6RA28854E
  37. W. H. Nam, B. B. Kim, Y. S. Lim, K. S. Dae, W.-S. Seo, H.-H. Park, and J. Y. Lee, "Phonon-glass electron-crystals in ZnO-multiwalled carbon nanotube nanocomposites" Nanoscale, 9 12941-8 (2017). https://doi.org/10.1039/C7NR03747C
  38. Y. Liu, Y. Lin, Z. Shi, C. Nan, "Preparation of $Ca_3Co_4O_9$ and improvement of its thermoelectric properties by spark plasma sintering" J. Am. Ceram. Soc., 88 1337-40 (2005). https://doi.org/10.1111/j.1551-2916.2005.00284.x
  39. S. Altin, M. A. Aksan, A. Bayri, "High temperature spin state transitions in misfit-layered $Ca_3Co_4O_9$" J. Alloy. Compd., 587 40-4 (2013).
  40. Y. Yin, B. Tudu, and A. Tiwari, "Recent advances in oxide thermoelectric materials and modules" Vacuum, 146 356-74 (2017). https://doi.org/10.1016/j.vacuum.2017.04.015
  41. Y. Miyazaki, M. Onoda, T. Oku, M. Kikuchi, Y. Ishii, Y. Ono, Y. Morii, and T. Kajitani, "Modulated structure of the thermoelectric compound $[Ca_2CoO_3]_{0.62}CoO_2$" J. Phys. Soc. Jpn., 71 491-7 (2002). https://doi.org/10.1143/JPSJ.71.491
  42. W.-S. Seo, S. Lee, Y. Lee, M.-H. Lee, Y. Masuda, and K. Koumoto, "High-resolution transmission electron microscopy study of $Ca_3Co_4O_9$" J. Electron Microsc., 53 397-401 (2004). https://doi.org/10.1093/jmicro/dfh046
  43. A. C. Masset, C. Mihel, A, Maignan, M. Hervieu, O. Toulemonde, F. Studer, and B. Raveau, J. Hejtmanek,"Misfit-layered cobaltite with an anisotropic giant magnetoresistance: $Ca_3Co_4O_9$" Phys. Rev. B., 62 166-75 (2000). https://doi.org/10.1103/physrevb.62.166
  44. M. Shikano and R. Funahashi, "Electrical and thermal properties of singlecrystalline $(Ca_2CoO_3)_{0.7}CoO_2$ with a $Ca_3Co_4O_9$ structure" Appl. Phys. Lett., 82 1851-3 (2003). https://doi.org/10.1063/1.1562337
  45. M. Mikami, K. Chong, Y. Miyazaki, T. Kajitani, T. Inoue, S. Sodeoka, and R. Funahashi,"Bi-substitution effects on crystal structure and thermoelectric properties of $Ca_3Co_4O_9$ single crystals" Jpn. J. Appl. Phys., 45 4131-6 (2006). https://doi.org/10.1143/JJAP.45.4131
  46. T. Yin, D. Liu, Y. Ou, F. Ma, S. Xie, J.-F. Li, and J. Li, "Nanocrystalline Thermoelectric $Ca_3Co_4O_9$ Ceramics by Sol-Gel Based Electrospinning and Spark Plasma Sintering" J. Phys. Chem. C, 114 10061-5 (2010). https://doi.org/10.1021/jp1024872
  47. N. V. Nong, N. Pryds, S. Linderoth, and M. Ohtaki, "Enhancement of the Thermoelectric Performance of p-Type Layered Oxide $Ca_3Co_4O_{9+{\delta}}$ Through Heavy Doping and Metallic Nanoinclusions" Adv. Mater., 23 2484-90 (2011). https://doi.org/10.1002/adma.201004782

Cited by

  1. P-형 Skutterudite 소재의 고온 열전물성 제어를 위한 공정 개발 vol.33, pp.6, 2020, https://doi.org/10.4313/jkem.2020.33.6.495
  2. P-형 Skutterudite 소재의 고온 열전물성 제어를 위한 공정 개발 vol.33, pp.6, 2020, https://doi.org/10.4313/jkem.2020.33.6.495
  3. Thermoelectric Properties in Bi2Te3/Poly(3,4-Ethylenedioxythiophene): Poly(4-Styrenesulfonate) Composites vol.24, pp.1, 2021, https://doi.org/10.31613/ceramist.2021.24.1.08